Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Numerous candidate plasticity-related genes revealed by differential cDNA cloning

Abstract

PLASTICITY is a property of the nervous system that allows it to modify its response to an altered input. This capacity for change suggests that there are molecular mechanisms in neurons that can couple stimuli to long-term alterations in phenotype1–3. Neuronal excitation elicits rapid transcriptional activation of several immediate–early genes4, for example c-fos, c-jun and zif268. Many immediate–early genes encode transcription factors that control expression of downstream genes whose products are believed to bring about long-term plastic changes3,4. Here we use a highly sensitive differential complementary DNA cloning procedure to identify genes that may participate in long-term plasticity. We cloned 52 cDNAs of genes induced by the glutamate analogue kainate in the hippocampus dentate gyrus. The number of these candidate plasticity-related genes (CPGs) is estimated to be 500–1,000. One of the cloned CPGs (16C8), encoding a protease inhibitor, is induced by a stimulus producing long-term potentiation and during dentate gyrus development; a second, cpgl, is dependent on activation of the NMDA (N-methyl-D-aspartate) receptor for induction and encodes a new small, dentate-gyrus-specific protein. Seventeen of the cloned CPGs encode known proteins, including six suggesting that strong neuronal activation leads to de novo synthesis of vesicular and other synaptic components.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hebb, D. O. Organization of Behaviour (Wiley, New York, 1949).

    Google Scholar 

  2. Constantine-Paton, M., Cline, H. T. & Debski, E. A. Rev. Neurosci. 13, 129–154 (1990).

    Article  CAS  Google Scholar 

  3. Goelet, P., Castellucci, V. F., Shacher, S. & Kandel, E. R. Nature 322, 419–422 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Sheng, M. & Greenberg, M. E. Neuron 4, 477–485 (1990).

    Article  CAS  Google Scholar 

  5. Bliss, T. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  6. McNamara, J. O. Trends Neurosci. 11, 33–36 (1988).

    Article  CAS  Google Scholar 

  7. Ben-Ari, Y. & Represa, A. Trends Neurosci. 13, 312–318 (1990).

    Article  CAS  Google Scholar 

  8. Squire, L. R. & Zola-Morgan, S. Science 253, 1380–1386 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Sonnenberg, J. L., Rauscher, F. J., Morgan, J. I. & Curran, T. Science 246, 1622–1625 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Morris, B. J., Feasey, K. J., Bruggencate, G., Herz, A. & Hollt, V. Proc. natn. Acad. Sci. U.S.A. 85, 3226–3230 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Gall, C. J. Neurosci 8, 1852–1862 (1988).

    Article  CAS  Google Scholar 

  12. Cotman, C. W., Monaghan, D. T. & Ganong, A. H. A. Rev. Neurosci. 11, 61–80 (1988).

    Article  CAS  Google Scholar 

  13. Altin, J. G. & Bradshaw, R. A. in Neurotrophic Factors (eds Loughlin, S. E. & Falcon, J. H.) 129–180 (Academic, San Diego, 1993).

    Google Scholar 

  14. Jessell, T. M. & Melton, D. A. Cell 68, 257–270 (1992).

    Article  CAS  Google Scholar 

  15. Guan, K., Haun, R. S., Watson, S. J., Geahlen, R. L. & Dixon, J. E. Proc. natn. Acad. Sci. U.S.A. 87, 1501–1505 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Nairn, A. C. & Schenolikar, S. Curr. Opin. Neurobiol. 2, 296–301 (1992).

    Article  CAS  Google Scholar 

  17. Rothman, J. E. Cell 59, 591–601 (1989).

    Article  CAS  Google Scholar 

  18. Edwards, D. R., Waterhouse, P., Holman, M. L. & Denhardt, D. T. Nucleic Acids Res. 14, 8863–8878 (1986).

    Article  CAS  Google Scholar 

  19. Altman, J. in Development Neurobiology (ed. Himwich, W. A.) 197–237 (Thomas, Springfield, U.S.A., 1970).

    Google Scholar 

  20. Qian, Z., Gilbert, M. E., Colicos, M. A., Kandel, E. R. & Kuhl, D. Nature 361, 453–457 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Monard, D. Trends Neurosci. 11, 541–544 (1988).

    Article  CAS  Google Scholar 

  22. Ben-Ari, Y. Neuroscience 14, 375–403 (1985).

    Article  CAS  Google Scholar 

  23. Foulkes, N. S., Borrelli, E. & Sassone-Corsi, P. Cell 64, 739–749 (1991).

    Article  CAS  Google Scholar 

  24. Abdollahi, A., Lord, K. A., Hoffman-Leibermann, B. & Liebermann, D. A. Oncogene 6, 165–167 (1991).

    CAS  PubMed  Google Scholar 

  25. Rapp, G., et al. DNA Cell Biol. 9, 479–484 (1990).

    Article  CAS  Google Scholar 

  26. Gaestel, M. et al. Eur. J. Biochem. 179, 209–213 (1989).

    Article  CAS  Google Scholar 

  27. Kirchhausen, T. et al. Proc. natn. Acad. Sci. U.S.A. 84, 8805–8809 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Huttner, W. B., Gerdes, H. H. & Rosa, P. Trends biochem. Sci. 16, 27–30 (1991).

    Article  CAS  Google Scholar 

  29. Civelli, O., Douglass, J., Goldstein, A. & Herbert, E. Proc. natn. Acad. Sci. U.S.A. 82, 4291–4295 (1985).

    Article  ADS  CAS  Google Scholar 

  30. Chappell, T. G. et al. Cell 45, 3–13 (1986).

    Article  CAS  Google Scholar 

  31. Kojima, T., Schworak, N. W. & Rosenberg, R. D. J. biol. Chem. 267, 4870–4877 (1992).

    CAS  PubMed  Google Scholar 

  32. Salminen, M. et al. Gene 93, 241–247 (1990).

    Article  CAS  Google Scholar 

  33. Chomczynski, P. & Sacchi, N. Analyt. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  34. Gubler, V. & Hoffman, B. J. Gene 25, 263–269 (1983).

    Article  CAS  Google Scholar 

  35. Sive, H. L. & St John, T. Nucleic Acids Res. 16, 10937 (1988).

    Article  CAS  Google Scholar 

  36. Short, J. M., Fernandez, J. M., Sorge, J. A. & Huse, W. D. Nucleic Acids Res. 16, 7583–7600 (1988).

    Article  CAS  Google Scholar 

  37. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbour Laboratory Press, N.Y., 1989).

    Google Scholar 

  38. Uhl, G. R. In Situ Hybridization in Brain (Plenum, New York and London, 1986).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedivi, E., Hevroni, D., Naot, D. et al. Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature 363, 718–722 (1993). https://doi.org/10.1038/363718a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363718a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing