Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Practising orientation identification improves orientation coding in V1 neurons

Abstract

The adult brain shows remarkable plasticity, as demonstrated by the improvement in fine sensorial discriminations after intensive practice. The behavioural aspects of such perceptual learning are well documented, especially in the visual system1,2,3,4,5,6,7,8. Specificity for stimulus attributes clearly implicates an early cortical site, where receptive fields retain fine selectivity for these attributes; however, the neuronal correlates of a simple visual discrimination task remained unidentified. Here we report electrophysiological correlates in the primary visual cortex (V1) of monkeys for learning orientation identification. We link the behavioural improvement in this type of learning to an improved neuronal performance of trained compared to naive neurons. Improved long-term neuronal performance resulted from changes in the characteristics of orientation tuning of individual neurons. More particularly, the slope of the orientation tuning curve that was measured at the trained orientation increased only for the subgroup of trained neurons most likely to code the orientation identified by the monkey. No modifications of the tuning curve were observed for orientations for which the monkey had not been trained. Thus training induces a specific and efficient increase in neuronal sensitivity in V1.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioural performance and specificity for position and orientation.
Figure 2: Neuronal responses.
Figure 3: Neuronal responses.
Figure 4: Neuronal performance.

Similar content being viewed by others

References

  1. Ahissar, M. & Hochstein, S. Task difficulty and the specificity of perceptual learning. Nature 387, 401–406 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Crist, R. E., Kapadia, M. K., Westheimer, G. & Gilbert, C. D. Perceptual learning of spatial localization: specificity for orientation, position, and context. J. Neurophysiol. 78, 2889–2894 (1997).

    Article  CAS  Google Scholar 

  3. Fiorentini, A. & Berardi, N. Perceptual learning specific for orientation and spatial frequency. Nature 287, 43–44 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Matthews, N., Liu, Z., Geesaman, B. J. & Qian, N. Perceptual learning on orientation and direction discrimination. Vision Res. 39, 3692–3701 (1999).

    Article  CAS  Google Scholar 

  5. Poggio, T., Fahle, M. & Edelman, S. Fast perceptual learning in visual hyperacuity. Science 256, 1018–1021 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Vogels, R. & Orban, G. A. The effect of practice on the oblique effect in line orientation judgements. Vision Res. 25, 1679–1687 (1985).

    Article  CAS  Google Scholar 

  7. Schoups, A. A., Vogels, R. & Orban, G. A. Human perceptual learning in identifying the oblique orientation: retinotopy, orientation specificity and monocularity. J. Physiol. 483, 797–810 (1995).

    Article  CAS  Google Scholar 

  8. Schoups, A. A. & Orban, G. A. Interocular transfer in perceptual learning of a pop-out discrimination task. Proc. Natl Acad. Sci. USA 93, 7358–7362 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Recanzone, G. H., Merzenich, M. M., Jenkins, W. M., Grajski, K. A. & Dinse, H. R. Topographic reorganization of the hand representation in cortical area 3b of owl monkeys trained in a frequency-discrimination task. J. Neurophysiol. 67, 1031–1056 (1992).

    Article  CAS  Google Scholar 

  10. Recanzone, G. H., Schreiner, C. E. & Merzenich, M. M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13, 87–103 (1993).

    Article  CAS  Google Scholar 

  11. Nudo, R. J., Milliken, G. W., Jenkins, W. M. & Merzenich, M. M. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J. Neurosci. 16, 785–807 (1996).

    Article  CAS  Google Scholar 

  12. Kaas, J. H. et al. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science 248, 229–231 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Gilbert, C. D. & Wiesel, T. N. Receptive field dynamics in adult primary visual cortex. Nature 356, 150–152 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Zohary, E., Celebrini, S., Britten, K. H. & Newsome, W. T. Neuronal plasticity that underlies improvement in perceptual performance. Science 263, 1289–1292 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Zohary, E. & Newsome, W. T. Perceptual learning in a direction discrimination task is not based upon enhanced neuronal sensitivity in the STS. Invest. Ophtalmol. Vis. Sci. 35, 1663 (1994).

    Google Scholar 

  16. Regan, D. & Beverley, K. I. Postadaptation orientation discrimination. J. Opt. Soc. Am. A 2, 147–155 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Bradley, A., Skottun, B. C., Ohzawa, I., Sclar, G. & Freeman, R. D. Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior. J. Neurophysiol. 57, 755–772 (1987).

    Article  CAS  Google Scholar 

  18. Vogels, R. & Orban, G. A. How well do response changes of striate neurons signal differences in orientation: a study in the discriminating monkey. J. Neurosci. 10, 3543–3558 (1990).

    Article  CAS  Google Scholar 

  19. Qian, N. & Matthews, N. A physiological theory for visual perceptual learning of orientation discrimination. Soc. Neurosci. Abs. 25, 1316 (1999).

    Google Scholar 

  20. Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. C. & Suarez, H. H. Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Somers, D. C., Nelson, S. B. & Sur, M. An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448–5465 (1995).

    Article  CAS  Google Scholar 

  22. Zhang, K., Ginzburg, I., McNaughton, B. & Sejnowski, T. J. Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J. Neurophysiol. 79, 1017–1044 (1998).

    Article  CAS  Google Scholar 

  23. Oram, M. W., Foldiak, P., Perrett, D. I. & Sengpiel, F. The ‘ideal homunculus’: decoding neural population signals. Trends Neurosci. 21, 259–265 (1998).

    Article  CAS  Google Scholar 

  24. Panzeri, S., Schultz, S. R., Treves, A. & Rolls, E. T. Correlations and the encoding of information in the nervous system. Proc. R. Soc. Lond. B 266, 1001–1012 (1999).

    Article  CAS  Google Scholar 

  25. Recanzone, G. H., Merzenich, M. M. & Schreiner, C. E. Changes in the distributed temporal response properties of SI cortical neurons reflect improvements in performance on a temporally based tactile discrimination task. J. Neurophysiol. 67, 1071–1091 (1992).

    Article  CAS  Google Scholar 

  26. Dosher, B. A. & Lu, Z. Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proc. Natl Acad. Sci. USA 95, 13988–13993 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Gold, J., Bennett, P. J. & Sekuler, A. B. Signal but not noise changes with perceptual learning. Nature 402, 176–178 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Judge, S. J., Richmond, B. J. & Chu, F. C. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res. 20, 535–538 (1980).

    Article  CAS  Google Scholar 

  29. Wetherill, G. B. & Levitt, H. Sequential estimation of points on a psychometric function. Brit. J. Math. Stat. Psychol. 18, 1–10 (1965).

    Article  CAS  Google Scholar 

  30. Snodderly, D. M. & Gur, M. Organization of striate cortex of alert, trained monkeys (Macaca fascicularis): ongoing activity, stimulus selectivity, and widths of receptice field activating regions. J. Neurophysiol. 74, 2100–2125 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank K. Claeys, P. Janssen, Z. Li, H. Op de Beeck, H. Peuskens, S. Raiguel, N. Sachs and W. Vanduffel for critical discussions, and M. DePaep, P. Kayenbergh, G. Meulemans, G. Vanparrijs for technical assistance. A.S. is supported by a fellowship from FWO. This project was funded by grants from FWO (A.S.) GSKE (R.V.) NSF and NIH (N.Q.) and from DWTC (G.O.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniek Schoups.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoups, A., Vogels, R., Qian, N. et al. Practising orientation identification improves orientation coding in V1 neurons. Nature 412, 549–553 (2001). https://doi.org/10.1038/35087601

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35087601

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing