Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Retinofugal fibres change conduction velocity and diameter between the optic nerve and tract in ferrets

Abstract

IN earlier studies of central nervous fibre tracts, it was tacitly assumed that individual axons are relatively uniform along their length. In the retinofugal pathway in particular, axon diameter, myelin thickness and correlated conduction properties1,2 have been treated as constant throughout the optic nerve, chiasm and tract. We report here that the conduction velocities of fibres contributing to the early components of the compound action potential are significantly greater in the optic tract than in the optic nerve of ferrets, and also that the diameters of the largest retinofugal fibres increase from nerve to tract3. This observation raises significant questions about the developmental mechanisms in the central nervous system that relate the axons, their diameters, and the glia with which they are myelinated. In addition, it indicates that studies that have relied on the constancy of conduction velocity along the retinofugal course4 may require reappraisal.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hursh, J. P. Am. J. Physiol. 127, 131–139 (1939).

    Google Scholar 

  2. Waxman, S. G. & Swadlow, H. A. Prog. Neurobiol. 8, 297–324 (1977).

    Article  CAS  Google Scholar 

  3. Baker, G. E. & Guillery, R. W. Soc. Neurosci. Abstr. 14, 992 (1988).

    Google Scholar 

  4. Stanford, L. R. Science 238, 358–360 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Bishop, P. O. & Mcleod, J. G. J. Neurophysiol. 17, 387–414 (1954).

    Article  CAS  Google Scholar 

  6. Bishop, P. O., Jeremy, D. & Lance, J. W. J. Physiol. Lond. 121, 415–432 (1953).

    Article  CAS  Google Scholar 

  7. Chang, H. T. J. Neurophysiol. 19, 224–231 (1956).

    Article  CAS  Google Scholar 

  8. Erhlanger, J. & Gasser, H. S. Electrical Signs of Nervous Activity 2nd edn (University Pennsylvania Press, Philadelphia, 1968)

    Google Scholar 

  9. Cleland, B. G., Dubin, M. W. & Levick, W. R. J. Physiol. Lond. 217, 473–496 (1971).

    Article  CAS  Google Scholar 

  10. Stone, J. & Fukuda, Y. J. Neurophysiol. 37, 722–748 (1974).

    Article  CAS  Google Scholar 

  11. Stone, J. & Hoffman, K-P. Brain Res. 43, 610–616 (1972).

    Article  CAS  Google Scholar 

  12. Stone, J. & Freeman, R. B. Expl Brain Res. 13, 489–497 (1971).

    CAS  Google Scholar 

  13. Sumitomo, I., Ide, K., Iwama, K. & Arikuni, T. Exp. Neurol. 25, 378–392 (1969).

    Article  CAS  Google Scholar 

  14. Ranck, J. B. Brain Res. 98, 417–440 (1975).

    Article  Google Scholar 

  15. Cleland, B. G., Levick, W. R. & Wassle, H. J. Physiol., Lond. 248, 151–171 (1975).

    Article  CAS  Google Scholar 

  16. Rowe, M. H. & Stone, J. Exp. Brain Res. 25, 339–357 (1976).

    Article  Google Scholar 

  17. Rowe, M. H. & Stone, J. Brain Behav. Evol. 14, 185–216 (1977).

    Article  CAS  Google Scholar 

  18. Bishop, G. H., Clare, M. H. & Landau, W. M. Exp. Neurol. 24, 386–399 (1969).

    Article  CAS  Google Scholar 

  19. Stone, J. & Fukuda, Y. J. Neurophysiol. 37, 722–748 (1974).

    Article  CAS  Google Scholar 

  20. Guillery, R. W. & Walsh, C. J. comp. Neurol. 265, 203–217 (1987).

    Article  CAS  Google Scholar 

  21. Raff, M. C. Science 243, 1450–1455 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Baker, G. E. Eur. J. Neurosci. 2, 24–33 (1990).

    Article  Google Scholar 

  23. Simpson, S. A. & Young, J. Z. J. Anat. 79, 48–65 (1945).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Friede, R. L. J. comp. Neurol. 144, 233–252 (1972).

    Article  CAS  Google Scholar 

  25. Windebank, A. J., Wood, P., Bunge, R. P. & Dyck, P. J. J. Neurosci. 5, 1563–1569 (1985).

    Article  CAS  Google Scholar 

  26. Pannese, E., Ledda, M. & Matsuda, S. J. Neurocytol. 17, 693–700 (1988).

    Article  CAS  Google Scholar 

  27. Fraher, J. P. J. Anat. 126, 509–533 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Traub, R. J. & Mendell, L. M. J. Neurophysiol. 59, 41–55 (1988).

    Article  CAS  Google Scholar 

  29. Maxwell, D. S., Kruger, L. & Pineda, A. Anat. Rec. 164, 113–126 (1969).

    Article  CAS  Google Scholar 

  30. Zahs, K. & Stryker, M. P. J. comp. Neurol. 241, 210–224 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, G., Stryker, M. Retinofugal fibres change conduction velocity and diameter between the optic nerve and tract in ferrets. Nature 344, 342–345 (1990). https://doi.org/10.1038/344342a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344342a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing