Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Glycine-receptor activation is required for receptor clustering in spinal neurons

Abstract

The ability of nerve cells to receive up to several thousands of synaptic inputs from other neurons provides the anatomical basis for information processing in the vertebrate brain. The formation of functional synapses involves selective clustering of neurotransmitter receptors at presumptive postsynaptic regions of the neuronal plasma membrane1,2,3,4. Receptor-associated proteins are believed to be crucial for this process. In spinal neurons, synaptic targeting of the inhibitory glycine receptor (GlyR)5,6 depends on the expression of the anchoring protein gephyrin7,8,9. Here we show that the competitive GlyR antagonist strychnine and L-type Ca2+-channel blockers inhibit the accumulation of GlyR and gephyrin at postsynaptic membrane areas in cultured rat spinal neurons. Our data are consistent with a model in which GlyR activation that results in Ca2+ influx is required for the clustering of gephyrin and GlyR at developing postsynaptic sites. Similar activity-driven mechanisms may be of general importance in synaptogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of strychnine treatment on the distribution of GlyR and gephyrin in spinal cultures.
Figure 2: Dose-response curves showing the effect of strychnine on the synaptic localization and number of cells with intracellular accumulation of GlyR immunoreactivity.
Figure 3: Effects of Ca2+-channel blockers and strychnine analogues on GlyR internalization and synaptic targeting.
Figure 4: A model for activity-dependent GlyR clustering at developing postsynaptic sites.

Similar content being viewed by others

References

  1. Froehner, S. C. Regulation of ion channel distribution at synapses. Annu. Rev. Neurosci. 16, 347–368 (1993).

    Article  CAS  Google Scholar 

  2. Ehlers, M. D., Mammen, A. L., Lau, L.-F. & Huganir, R. L. Synaptic targeting of glutamate receptors. Curr. Opin. Cell Biol. 8, 484–489 (1996).

    Article  CAS  Google Scholar 

  3. Kirsch, J., Meyer, G. & Betz, H. Synaptic targeting of ionotropic neurotransmitter receptors. Mol. Cell. Neurosci. 8, 93–98 (1996).

    Article  CAS  Google Scholar 

  4. Sheng, M. Glutamate receptors put in their place. Nature 386, 221–223 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Triller, A., Cluzeaud, F., Pfeiffer, F., Betz, H. & Korn, H. Distribution of glycine receptors at central synapses: an immunoelectron microscopy study. J. Cell Biol. 101, 683–688 (1985).

    Article  CAS  Google Scholar 

  6. Altschuler, R. A., Betz, H., Parakkal, M., Reeks, K. & Wenthold, R. Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor. Brain Res. 369, 316–320 (1986).

    Article  CAS  Google Scholar 

  7. Kirsch, J. et al. The 93-kDa glycine receptor-associated protein binds to tubulin. J. Biol. Chem. 266, 22242–22245 (1991).

    CAS  PubMed  Google Scholar 

  8. Prior, P. et al. Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron 8, 1161–1170 (1992).

    Article  CAS  Google Scholar 

  9. Kirsch, J., Wolters, I., Triller, A. & Betz, H. Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366, 745–748 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Kuhse, J., Betz, H. & Kirsch, J. The inhibitory glycine receptor: architecture, synaptic localization and molecular pathology of a postsynaptic ion channel complex. Curr. Opin. Neurobiol. 5, 318–323 (1995).

    Article  CAS  Google Scholar 

  11. Hoch, W., Betz, H. & Becker, C.-M. Primary cultures of mouse spinal cord express the neonatal isoform of the inhibitory glycine receptor. Neuron 3, 339–348 (1990).

    Article  Google Scholar 

  12. Béchade, C., Colin, I., Kirsch, J., Betz, H. & Triller, A. Glycine receptor α subunit and gephyrin expression in cultured spinal neurons: a quantitative analysis. Eur. J. Neurosci. 8, 429–435 (1996).

    Article  Google Scholar 

  13. Bormann, J., Hamill, O. P. & Sakmann, B. Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones. J. Physiol. (London) 385, 243–286 (1987).

    Article  CAS  Google Scholar 

  14. Kirsch, J. & Betz, H. The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. J. Neurosci. 15, 4148–4156 (1995).

    Article  CAS  Google Scholar 

  15. Pfeiffer, F., Simler, R., Grenningloh, G. & Betz, H. Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptor of rat spinal cord. Proc. Natl Acad. Sci. USA 81, 7224–7227 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Knaus, P., Betz, H. & Rehm, H. Expression of synaptophysin during postnatal development of the mouse brain. J. Neurochem. 47, 1302–1304 (1986).

    Article  CAS  Google Scholar 

  17. Virginio, C. & Cherubini, E. Glycine-activated whole cell and single channel currents in rat cerebellar granule cells in culture. Brain Res. 98, 30–40 (1997).

    Article  CAS  Google Scholar 

  18. Fritschy, J. M. et al. Five subtypes of type A γ-aminobutyric acid receptors identified in neurons by double and triple immunofluorescence staining with subunit specific antibodies. Proc. Natl Acad. Sci. USA 89, 6726–6730 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Betz, H. The glycine receptor of rat spinal cord: exploring the site of action of the plant alkaloid strychnine. Angew. Chem. Int. Ed. 24, 365–370 (1985).

    Article  Google Scholar 

  20. Becker, C.-M. in Handbook of Experimental Pharmacology, Vol. 102, Selective Neurotoxicity (eds Herken, H. & Hucho, F.) Vol. 1, 540–575 (Springer, Heidelberg, 1992).

    Google Scholar 

  21. Reichling, D. B., Kyrozis, A., Wang, J. & MacDermott, A. B. Mechanisms of GABA and glycine depolarization-induced calcium transients in rat dorsal horn neurons. J. Physiol. (London) 476, 411–421 (1994).

    Article  CAS  Google Scholar 

  22. Wang, J., Reichling, D. B., Kyrozis, A. & MacDermott, A. B. Developmental loss of GABA- and glycine-induced depolarization and Ca2+ transients in embryonic rat dorsal horn neurons in culture. Eur. J.Neurosci. 6, 1275–1280 (1994).

    Article  CAS  Google Scholar 

  23. Boehm, S., Harvey, R. J., v.Holst, A., Rohrer, H. & Betz, H. Glycine receptors in cultured chick sympathetic neurons are excitatory and trigger neurotransmitter release. J. Physiol. (London) 504, 683–694 (1997).

    Article  CAS  Google Scholar 

  24. Craig, A. M., Banker, G., Chang, W., McGrath, M. E. & Serpinskaya, A. S. Clustering of gephyrin at GABAergic but not glutamatergic synapses in cultured rat hippocampal neurons. J. Neurosci. 16, 3166–3177 (1996).

    Article  CAS  Google Scholar 

  25. Kirsch, J., Kuhse, J. & Betz, H. Targeting of glycine receptor subunits to gephyrin-rich domains in transfected human embryonic kidney cells. Mol. Cell. Neurosci. 6, 450–461 (1995).

    Article  CAS  Google Scholar 

  26. Meyer, G., Kirsch, J., Betz, H. & Langosch, D. Identification of a gephyrin binding motif on the glycine receptor β subunit. Neuron 15, 563–572 (1995).

    Article  CAS  Google Scholar 

  27. Hall, Z. W. & Sanes, J. R. Synaptic structure and development: the neuromuscular junction. Cell 72 (suppl.), 99–121 (1993).

    Article  Google Scholar 

  28. Changeux, J. P. & Danchin, A. Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. Nature 264, 705–712 (1976).

    Article  ADS  CAS  Google Scholar 

  29. Goslin, K. & Banker, G. in Culturing Nerve Cells (eds Banker, G. & Goslin, K.) 251–282 (MIT Press, Cambridge, MA, 1991).

    Google Scholar 

Download references

Acknowledgements

We thank I. Bartnik for technical assistance and V. O'Connor, R. Harvey and A.Püschel for critically reading the manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie. J.K. holds an endowed professorship from the Stifterverband für die Deutsche Wissenschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kirsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirsch, J., Betz, H. Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature 392, 717–720 (1998). https://doi.org/10.1038/33694

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/33694

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing