Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Acetylcholine hyperpolarizes central neurones by acting on an M2 muscarinic receptor

Abstract

Acetylcholine (ACh) is considered to act as a neurotransmitter in the mammalian brain by binding to membrane receptors and bringing about a change in neurone excitability. In the case of muscarinic receptors, cell excitability is usually increased1; this effect results from a closure of membrane potassium channels in cortical cells2,3. However, some central neurones are inhibited by ACh1, and we hypothesized that these two opposite effects of ACh resulted from interactions with different subtypes of muscarinic receptor. We made intracellular recordings from neurones in the rat nucleus parabrachialis, a group of neurones in the upper pons some of which themselves synthesize ACh4,5. ACh and muscarine caused a membrane hyperpolarization which resulted from an increase in the membrane conductance to potassium ions. The muscarinic receptor subtype was characterized by determining the dissociation equilibrium constant (KD) for pirenzepine during the intracellular recording; the value of 600 nM indicates a receptor in the M2 class. This muscarinic receptor is quite different from that which brings about a decrease in potassium conductance in other neurones, which has a pirenzepine KD of 10nM (M1 receptors)6–8. It is possible that antagonists selective for this kind of M2 receptor would be useful in the management of conditions, such as Alzheimer's disease, which are associated with a reduced effectiveness of cholinergic neurones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Krnjevic, K. Physiol. Rev. 54, 418–540 (1974).

    Article  CAS  Google Scholar 

  2. Krnjevic, K., Pumain, R. & Renaud, L. J. Physiol., Lond. 215, 247–268 (1971).

    Article  CAS  Google Scholar 

  3. Halliwell, J. & Adams, P. R. Brain Res. 250, 71–92 (1982).

    Article  CAS  Google Scholar 

  4. Armstrong, D. M., Saper, C. B., Levey, A. I., Wainer, B.H. & Terry, R. D. J. comp. Neurol. 216, 53–68 (1983).

    Article  CAS  Google Scholar 

  5. McGeer, P. L., McGeer, E. G. & Peng, J. H. Life Sci. 34, 2319–2338 (1984).

    Article  CAS  Google Scholar 

  6. North, R. A. & Surprenant, A. J. Physiol., Lond. 368, 435–452 (1985).

    Article  CAS  Google Scholar 

  7. Brown, D. A., Forward, A. & Marsh, S. Br. J. Pharmac. 71, 362–364 (1980).

    Article  CAS  Google Scholar 

  8. Brown, D. A. & Constanti, A., Br. J. Pharmac. 70, 593–608 (1980).

    Article  CAS  Google Scholar 

  9. Williams, J. T., North, R. A., Shefner, S. A., Nishi, S. & Egan, T. M. Neuroscience 13, 137–156 (1984).

    Article  CAS  Google Scholar 

  10. Hartzell, H. C., Kuffler, S. W., Stickgold, R. & Yoshikami, D. J. Physiol., Lond. 271, 817–846 (1977).

    Article  CAS  Google Scholar 

  11. Dodd, J. & Horn, J. P. J. Physiol., Lond. 334, 271–291 (1983).

    Article  CAS  Google Scholar 

  12. Cole, A. E. & Shinnick-Gallagher, P. Nature 307, 270–271 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Egan, T. M. & North, R. A. Br. J. Pharmac. 85, 733–735 (1985).

    Article  CAS  Google Scholar 

  14. Williams, J. T., Henderson, G. & North, R. A. Neuroscience 14, 95–101 (1985).

    Article  CAS  Google Scholar 

  15. Williams, J. T., Egan, T. M. & North, R. A. Nature 299, 74–76 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Goyal, R. K. & Rattan, S. Gastroenterology 74, 598–618 (1978).

    CAS  PubMed  Google Scholar 

  17. Hammer, R., Berrie, C. P., Birdsall, N. J. M., Burgen, A. S. V. & Hulme, E. C. Nature 283, 90–92 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Arunlakshana, O. & Schild, H. O. Br. J. Pharmac. 14, 48–58 (1959).

    CAS  Google Scholar 

  19. Hirschowitz, B. I. et al. (eds) Subtypes of Muscarinic Receptors (Elsevier, Amsterdam, 1984).

  20. Morita, K., North, R. A. & Tokimasa, T. J. Physiol., Lond. 333, 125–139 (1982).

    Article  CAS  Google Scholar 

  21. Surprenant, A. Trends pharmac. Sci. (in the press).

  22. Chassaing, C., Dureng, G., Baissat, J. & Duchene-Marullaz, P. Life Sci. 35, 1739–1745 (1984).

    Article  CAS  Google Scholar 

  23. Brown, H. F. Physiol. Rev. 62, 505–530 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Ijima, T., Irisawa, H. & Kameyama, M. J. Physiol., Lond. 359, 485–501 (1985).

    Article  Google Scholar 

  25. Belluzi, O., Sacchi, O. & Wanke, E. J. Physiol., Lond. 358, 109–129 (1985).

    Article  Google Scholar 

  26. Kuba, K. & Koketsu, K., Jap. J. Physiol. 26, 703–716 (1976).

    Article  CAS  Google Scholar 

  27. Iwatsuki, N. & Petersen, O. H. J. Physiol., Lond. 269, 735–751 (1977).

    Article  CAS  Google Scholar 

  28. Kuba, K. & Koketsu, K. Prog. Neurobiol. 11, 77–169 (1977).

    Article  Google Scholar 

  29. Bolton, T. B. Physiol. Rev. 59, 606–718 (1979).

    Article  CAS  Google Scholar 

  30. Kilbinger, H., Halim, S., Lambrecht, G., Weiler, W. & Wessler, I. Eur. J. Pharmac. 103, 313–320 (1984).

    Article  CAS  Google Scholar 

  31. Fuder, H., Rink, D. & Muscholl, E. Naunyn-Schmiedebergs Archs Pharmak. 318, 210–219 (1982).

    Article  CAS  Google Scholar 

  32. Raiterai, M., Leardi, R. & Marchi, M. J. Pharmac. exp. Ther. 228, 209–214 (1984).

    Google Scholar 

  33. Mash, D. C., Flynn, D. D. & Potter, L. T. Science 228, 1115–1117 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egan, T., North, R. Acetylcholine hyperpolarizes central neurones by acting on an M2 muscarinic receptor. Nature 319, 405–407 (1986). https://doi.org/10.1038/319405a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319405a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing