Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Separate body- and world-referenced representations of visual space in parietal cortex

Abstract

In order to direct a movement towards a visual stimulus, visualspatial information must be combined with postural information1. For example, directing gaze (eye plus head) towards a visible target requires the combination of retinal image location with eye and head position to determine the location of the target relative to the body. Similarly, world-referenced postural information is required to determine where something lies in the world. Posterior parietal neurons recorded in monkeys combine visual information with eye and head position2,3,4. A population of such cells could make up a distributed representation of target location in an extraretinal frame of reference4,5,6,7. However, previous studies have not distinguished between world-referenced and body-referenced signals4,8. Here we report that modulations of visual signals (gain fields) in two adjacent cortical fields, LIP and 7a, are referenced to the body and to the world, respectively. This segregation of spatial information is consistent with a streaming of information, with one path carrying body-referenced information for the control of gaze, and the other carrying world-referenced information for navigation and other tasks that require an absolute frame of reference.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LIP responses (open circles) were modulated by body- but not world-referenced target location; 7a responses (filled squares) were modulated by world- but not body-referenced location.
Figure 2: Head-position gain fields in LIP were accounted for by body-referenced modulation.
Figure 3: The 7a world-referenced gain field modulation did not fully account for modulation seen after active head movements.

Similar content being viewed by others

References

  1. Andersen, R. A., Snyder, L. H., Li, C. S. & Stricanne, B. Coordinate transformations in the representation of spatial information. Curr. Opin. Neurobiol. 3, 171–176 (1993).

    Article  CAS  Google Scholar 

  2. Andersen, R. A. & Mountcastle, V. B. The influence of the angle of gaze upon the excitability of the light sensitive neurons of the posterior parietal cortex. J. Neurosci. 3, 532–548 (1983).

    Article  CAS  Google Scholar 

  3. Anderson, R. A., Essick, G. K. & Siegel, R. M. Encoding of spatial location by posterior parietal neurons. Science 230, 456–458 (1985).

    Article  ADS  Google Scholar 

  4. Brotchie, P. R., Andersen, R. A., Snyder, L. H. & Goodman, S. J. Head position signals used by parietal neurons to encode locations of visual stimuli. Nature 385, 232–235 (1995).

    Article  ADS  Google Scholar 

  5. Zipser, D. & Andersen, R. A. Aback-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331, 679–684 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Salinas, E. & Abbott, L. F. Transfer of coded information from sensory to motor networks. J. Neurosci. 15, 6461–6474 (1995).

    Article  CAS  Google Scholar 

  7. Pouget, A. & Sejnowski, T. J. Spatial representations in the parietal cortex may use basis functions. Adv. Neural Inf. Process. 7, 157–164 (1995).

    Google Scholar 

  8. Duhamel, J.-R., Bremmer, F., BenHamed, S. & Graf, W. Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389, 845–848 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Von Holst, E. & Mittelstaedt, H. Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37, 464–475 (1950). (In German.)

    Article  ADS  Google Scholar 

  10. Mergner, T., Nardi, G. L., Becker, W. & Deecke, L. The role of canal–neck interaction for the perception of horizontal trunk and head rotation. Exp. Brain Res. 49, 198–208 (1983).

    Article  CAS  Google Scholar 

  11. Roll, R., Velay, J. L. & Roll, J. P. Eye and neck proprioceptive messages contribute to the spatial coding of retinal input in visually oriented activities. Exp. Brain Res. 85, 423–431 (1991).

    Article  CAS  Google Scholar 

  12. Karnath, H.-O., Sievering, D. & Fetter, M. The interactive contribution of neck muscle proprioception and vestibular stimulation to subjective “straight ahead” orientation in man. Exp. Brain Res. 101, 140–146 (1994).

    Article  CAS  Google Scholar 

  13. Jones, G. M. & Milsum, J. H. Spatial and dynamic aspects of visual fixation. IEEE Trans. Biomed. Eng. 12(2), 54–62 (1965).

    Article  Google Scholar 

  14. Robinson, D. A. in Basic Mechanisms of Ocular Motility and their Clinical Implications (eds Lennerstrand, G. & Bach-y-Rita, P.) 337–374 (Pergamon, Oxford, (1975)).

  15. Andersen, R. A., Asanuma, C., Essick, G. & Siegel, R. M. Corticocortical connections of anatomically and physiologically defined sub-divisions within the inferior parietal lobule. J. Comp. Neurol. 296, 65–113 (1990).

    Article  CAS  Google Scholar 

  16. Barash, S., Bracewell, R. M., Fogassi, L., Gnadt, J. W. & Andersen, R. A. Saccade-related activity in the lateral intraparietal area. I. Temporal properties. J. Neurophysiol. 66, 1095–1108 (1991).

    Article  CAS  Google Scholar 

  17. Shibutani, H., Sakata, H. & Hyvarinen, J. Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of monkey. Exp. Brain Res. 55, 1–8 (1984).

    Article  CAS  Google Scholar 

  18. Thier, P. & Andersen, R. A. Electrical microstimulation suggests two different forms of representation of head-centered space in the intraparietal sulcus of rhesus monkeys. Proc. Natl Acad. Sci. USA 93, 4962–4967 (1996)

    Article  ADS  CAS  Google Scholar 

  19. Snyder, L. H., Batista, A. P. & Andersen, R. A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Freedman, E. G. & Sparks, D. L. Activity of cells in the deeper layers of the superior colliculus of the rhesus monkey: evidence for a gaze displacement command. J. Neurophysiol. 78, 1669–1690 (1997).

    Article  CAS  Google Scholar 

  21. Aguirre, G. K., Detre, J. A., Alsop, D. C. & D'Esposito, M. The parahippocampus subserves topographic learning in man. Cereb. Cortex 6, 823–829 (1996).

    Article  CAS  Google Scholar 

  22. Squire, L. R. Memory and the hippocampus: a synthesis of findings from rat, monkey and humans. Psychol. Rev. 99, 195–231 (1992).

    Article  CAS  Google Scholar 

  23. McNaughton, B. L., Barnes, C. A. & O'Keefe, J. The contributions of position, direction and velocity to single unit activity in the hippocampus of freely-moving rats. Exp. Brain Res. 52, 41–49 (1983).

    Article  CAS  Google Scholar 

  24. Baylis, G. C. & Moore, B. O. Hippocampal lesions impair spatial response selection in the primate. Exp. Brain Res. 98, 110–118 (1994).

    Article  CAS  Google Scholar 

  25. Rolls, E. T. & O'Mara, S. M. View-responsive neurons in the primate hippocampal complex. Hippocampus 5, 409–424 (1995).

    Article  CAS  Google Scholar 

  26. Van Essen, D. C. & Maunsell, J. H. R. Hierarchical organization and functional streams in the visual cortex. Trends Neurosci. 6, 370–375 (1983).

    Article  Google Scholar 

  27. Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    Article  CAS  Google Scholar 

  28. Fredrickson, J. M., Schwarz, D. & Kornhumber, H. H. Convergence and interaction of vestibular and deep somatic afferents upon neurons in the vestibular nuclei of cat. Acta Otolaryngol. 61, 168–188 (1966).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Roberts and B. Gillikin for technical assistance, and S. Gertmenian for editorial assistance. This work was supported by the Della Martin, McDonnell-Pew and Sloan foundations, the National Eye Institute and the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, L., Grieve, K., Brotchie, P. et al. Separate body- and world-referenced representations of visual space in parietal cortex. Nature 394, 887–891 (1998). https://doi.org/10.1038/29777

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29777

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing