Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Improved auditory spatial tuning in blind humans

Abstract

Despite reports of improved auditory discrimination capabilities in blind humans1,2,3 and visually deprived animals4, there is no general agreement as to the nature or pervasiveness of such compensatory sensory enhancements5. Neuroimaging studies have pointed out differences in cerebral organization between blind and sighted humans6,7,8,9,10,11,12, but the relationship between these altered cortical activation patterns and auditory sensory acuity remains unclear. Here we compare behavioural and electrophysiological indices of spatial tuning within central and peripheral auditory space in congenitally blind and normally sighted but blindfolded adults to test the hypothesis (raised by earlier studies of the effects of auditory deprivation on visual processing13,14) that the effects of visual deprivation might be more pronounced for processing peripheral sounds. We find that blind participants displayed localization abilities that were superior to those of sighted controls, but only when attending to sounds in peripheral auditory space. Electrophysiological recordings obtained at the same time revealed sharper tuning of early spatial attention mechanisms in the blind subjects. Differences in the scalp distribution of brain electrical activity between the two groups suggest a compensatory reorganization of brain areas in the blind that may contribute to the improved spatial resolution for peripheral sound sources.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Speaker layout and response gradients.
Figure 2: Event-related potentials to standard stimuli.
Figure 3: Topographic voltage maps of the N1 attention effect (attended minus unattended amplitudes) and the normalized anterior–posterior sca.

Similar content being viewed by others

References

  1. Muchnik, C., Efrati, M., Nemeth, E., Malin, M. & Hildesheimer, M. Central auditory skills in blind and sighted subjects. Scand. Audiol. 20, 19–23 (1991).

    Article  CAS  Google Scholar 

  2. Lessard, N., Pareé, Lepore, F. & Lassonde, M. Early-blind human subjects localize sound sources better than sighted subjects. Nature 395, 278–280 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Rice, C. E. Early experience and perceptual enhancement. Res. Bull. Am. Found. Blind 22, 1–22 (1970).

    Google Scholar 

  4. Rauschecker, J. P. Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci. 18, 36–43 (1995).

    Article  CAS  Google Scholar 

  5. Miller, L. Diderot reconsidered: Visual impairment and auditory compensation. J. Vis. Impair. Blind. 86, 206–210 (1992).

    Google Scholar 

  6. Röder, B., Rösler, F. & Hennighausen, E. Different cortical activation patterns in blind and sighted humans during encoding and transformation of haptic images. Psychophysiology 34, 292–307 (1997).

    Article  Google Scholar 

  7. Röder, B., Rösler, F., Hennighausen, E. & Näcker, F. Event-related potentials during auditory and somatosensory discrimination in sighted and blind human subjects. Cogn. Brain Res. 4, 77–93 (1996).

    Article  Google Scholar 

  8. Rösler, F., Röder, B., Heil, M. & Hennighausen, E. Topographic differences of slow event-related brain potentials in blind and sighted adult human subjects during haptic mental rotation. Cogn. Brain Res. 1, 145–159 (1993).

    Article  Google Scholar 

  9. Wanet-Defalque, M. C. et al. High metabolic activity in the visual cortex of early blind human subjects. Brain Res. 446, 369–373 (1988).

    Article  CAS  Google Scholar 

  10. Sadato, N. et al. Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380, 526–528 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Uhl, F., Franzen, P., Podreka, I., Steiner, M. & Deecke, L. Increased regional cerebral blood flow in inferior occipital cortex and cerebellum of early blind humans. Neurosci. Lett. 150, 162–164 (1993).

    Article  CAS  Google Scholar 

  12. Kujala, T., Alho, K., Paavilainen, P., Summala, H. & Näätänen, R. Neuronal plasticity in processing of sound location by the early blind: an event-related potential study. Electroencephalogr. Clin. Neurophysiol. 84, 469–472 (1992).

    Article  CAS  Google Scholar 

  13. Neville, H. J. & Lawson, D. Attention to central and peripheral visual space in a movement detection task: an event-related potential and behavioral study. II. Congenitally deaf adults. Brain Res. 405, 268–283 (1987).

    Article  CAS  Google Scholar 

  14. Neville, H. J., Schmidt, A. & Kutas, M. Alterated visual-evoked potentials in congenitally deaf adults. Brain Res. 266, 127–132 (1983).

    Article  CAS  Google Scholar 

  15. Downing, C. J. & Pinker, S. in Attention and Performance Vol. XI(eds Posner, M. & Martin, O. S. M.) 171–188 (Erlbaum, Hillsdale, New Jersey, (1985).

    Google Scholar 

  16. Mondor, T. A. & Zatorre, R. J. Shifting and focusing auditory spatial attention. J. Exp. Psychol. Hum. Percept. 211, 387–409 (1995).

    Article  Google Scholar 

  17. Hillyard, S. A., Mangun, G. R., Woldorff, M. C. & Luck, S. J. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 665–681 (MIT Press, Cambridge, Massachusetts, (1995).

    Google Scholar 

  18. Näätänen, R. Attention and Brain Function (Erlbaum, Hillsdale, New Jersey, (1992).

    Google Scholar 

  19. Teder-Sälejärvi, W. & Hillyard, S. A. The gradient of spatial auditory attention in free field: An event-related potential study. Percept. Psychophys. 60, 1228–1242 (1998).

    Article  Google Scholar 

  20. Middlebrooks, J. C. & Green, D. M. Sound localization by human listeners. Annu. Rev. Psychol. 42, 135–159 (1991).

    Article  CAS  Google Scholar 

  21. Mills, A. in Foundations of Modern Auditory Theory (ed. Fobias, J. V.) 303–348 (Academic, New York, (1972).

    Google Scholar 

  22. Ashmead, D. H. et al. Spatial hearing in blind children with visual disabilities. Perception 27, 105–122 (1998).

    Article  CAS  Google Scholar 

  23. Rauschecker, J. P. & Harris, L. R. Auditory compensation of the effect of visual deprivation in cats' superior colliculus. Exp. Brain Res. 50, 63–83 (1983).

    Article  Google Scholar 

  24. Hyvärinen, J., Hyvärinen, L. & Linnankoski, I. Modification of parietal association cortex and functional blindness after binocular deprivation in young monkeys. Exp. Brain Res. 42, 1–8 (1981).

    Article  Google Scholar 

  25. Cohen, L. G. et al. Functional relevance of cross-model plasticity in blind humans. Nature 389, 180–183 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Morrongiello, B. A. in The Development of Intersensory Perception (eds Lewkowicz, D. J. & Lickliter, R.) 235–263 (Erlbaum, Hillsdale, New Jersey, (1994).

    Google Scholar 

  27. Brainard, M. S. & Knudsen, E. I. Sensitive periods for visual calibration of auditory space map in the barn owl optic tectum. J. Neurosci. 10, 3929–3942 (1998).

    Article  Google Scholar 

  28. Knudsen, E. I. Capacity for plasticity in the adult owl auditory system expanded by juvenile experience. Science 279, 1531–1533 (1998).

    Article  ADS  CAS  Google Scholar 

  29. Clark, V. P., Fan, S. & Hillyard, S. A. Identification of early visual evoked potential generators by retinotopic and topographic analyses. Hum. Brain. Map. 2, 170–187 (1995).

    Article  Google Scholar 

  30. Huynh, H. & Feldt, L. S. Estimation of the box correction for degrees of freedom from sample data in randomized block and splitplot designs. J. Edu. Stat. 1, 69–82 (1976).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the San Diego Center for the Blind and Visually Impaired, the Braille Institute of America (San Diego), and the Blind Recreation Center in San Diego for help in recruiting blind participants; L. Anllo-Vento for helping to recruit matched sighted controls; C. Nava for help during data acquisition; and M. Marlow for computer assistance. This work was supported by the German Research Foundation (DFG) and grants from the National Institutes of Mental Health and National Institutes of Health.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röder, B., Teder-Sälejärvi, W., Sterr, A. et al. Improved auditory spatial tuning in blind humans. Nature 400, 162–166 (1999). https://doi.org/10.1038/22106

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22106

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing