Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Can molecules explain long-term potentiation?

Although over 100 molecules have been implicated in long-term potentiation and depression, no consensus on their underlying molecular mechanisms has emerged. Here we discuss the difficulties of providing molecular explanations for cellular neurobiological phenomena.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction and expression of LTP.
Figure 2: Some of the reasons why so many molecules have been implicated in LTP.

References

  1. Barria, A., Muller, D., Derkach, V., Griffith, L. C. & Soderling, T. R. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276, 2042–2045 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Jia, Z. et al. Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 17, 945–956 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  3. Aiba, A. et al. Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell 79, 365–375 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Manahan-Vaughan, D. & Reymann, K. G. Regional and developmental profile of modulation of hippocampal synaptic transmission and LTP by AP4-sensitive mGluRs in vivo. Neuropharmacology 34, 991–1001 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Lu, Y. M. et al. Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J. Neurosci. 17, 5196– 5205 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsien, J. Z., Huerta, P. T. & Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327–1338 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Kiyama, Y. et al. Increased thresholds for long-term potentiation and contextual learning in mice lacking the NMDA-type glutamate receptor epsilon1 subunit. J. Neurosci. 18, 6704– 6712 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Okabe, S. et al. Hippocampal synaptic plasticity in mice overexpressing an embryonic subunit of the NMDA receptor. J. Neurosci 18, 4177–4188 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bramham, C. R., Bacher-Svendsen, K. & Sarvey, J. M. LTP in the lateral perforant path is beta-adrenergic receptor-dependent. Neuroreport 8, 719– 724 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Kessey, K., Trommer, B. L., Overstreet, L. S., Ji, T. & Mogul, D. J. A role for adenosine A2 receptors in the induction of long-term potentiation in the CA1 region of rat hippocampus. Brain Res. 756, 184–190 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Matthies, H. et al. Dopamine D1-deficient mutant mice do not express the late phase of hippocampal long-term potentiation. Neuroreport 8, 3533–3535 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Bramham, C. R. & Sarvey, J. M. Endogenous activation of mu and delta-1 opioid receptors is required for long-term potentiation induction in the lateral perforant path: dependence on GABAergic inhibition. J. Neurosci. 16, 8123– 8131 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Auerbach, J. M. & Segal, M. Muscarinic receptors mediating depression and long-term potentiation in rat hippocampus. J. Physiol. (Lond.) 492, 479–493 (1996).

    Article  CAS  Google Scholar 

  14. Davies, C. H., Starkey, S. J., Pozza, M. F. & Collingridge, G. L. GABA autoreceptors regulate the induction of LTP. Nature 349, 609–611 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Terranova, J. P., Michaud, J. C., Le Fur, G. & Soubrie, P. Inhibition of long-term potentiation in rat hippocampal slices by anandamide and WIN55212-2: reversal by SR141716 A, a selective antagonist of CB1 cannabinoid receptors. Naunyn-Schmiedebergs Arch. Pharmacol. 352 , 576–579 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Manabe, T. et al. Facilitation of long-term potentiation and memory in mice lacking nociceptin receptors. Nature 394, 577–581 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Staubli, U. & Xu, F. B. Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J. Neurosci. 15, 2445– 2452 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stella, N., Schweitzer, P. & Piomelli, D. A second endogenous cannabinoid that modulates long-term potentiation. Nature 388, 773– 778 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Drew, G. M., Coussens, C. M. & Abraham, W. C. Effects of endothelin-1 on hippocampal synaptic plasticity. Neuroreport 9, 1827–1830 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Aizawa, M., Ito, Y. & Fukuda, H. Roles of gamma-aminobutyric acid B (GABA B) and gamma-hydroxybutyric acid receptors in hippocampal long-term potentiation and pathogenesis of absence seizures. Biol. Pharmaceutical Bull. 20, 1066–1070 (1997).

    Article  CAS  Google Scholar 

  21. Zhuo, M., Small, S. A., Kandel, E. R. & Hawkins, R. D. Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science 260, 1946–1950 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Ishiyama, J., Saito, H. & Abe, K. Epidermal growth factor and basic fibroblast growth factor promote the generation of long-term potentiation in the dentate gyrus of anaesthetized rats. Neuroscience Res. 12, 403–411 (1991).

    Article  CAS  Google Scholar 

  23. Klann, E., Roberson, E. D., Knapp, L. T. & Sweatt, J. D. A role for superoxide in protein kinase C activation and induction of long-term potentiation. J. Biol. Chem. 273, 4516– 4522 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Eilam, R., Pinkas-Kramarski, R., Ratzkin, B. J., Segal, M. & Yarden, Y. Activity-dependent regulation of Neu differentiation factor/neuregulin expression in rat brain. Proc. Natl. Acad. Sci. USA 95, 1888– 1893 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tancredi, V., D'Arcangelo, G., Mercanti, D. & Calissano, P. Nerve growth factor inhibits the expression of long-term potentiation in hippocampal slices. Neuroreport 4, 147– 150 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Korte, M. et al. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. USA 92, 8856–8860 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kang, H., Welcher, A. A., Shelton, D. & Schuman, E. M. Neurotrophins and time: different roles for TrkB signaling in hippocampal long-term potentiation. Neuron 19, 653– 664 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, J., Wang, Y., Rowan, M. J. & Anwyl, R. Evidence for involvement of the neuronal isoform of nitric oxide synthase during induction of long-term potentiation and long-term depression in the rat dentate gyrus in vitro . Neuroscience 78, 393– 398 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Kantor, D. B. et al. A role for endothelial NO synthase in LTP revealed by adenovirus-mediated inhibition and rescue. Science 274, 1744 –1748 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Miller, B., Sarantis, M., Traynelis, S. F. & Attwell, D. Potentiation of NMDA receptor currents by arachidonic acid. Nature 355, 722–725 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  31. Kato, K., Clark, G. D., Bazan, N. G. & Zorumski, C. F. Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature 367, 175– 179 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Schneider, H. et al. A neuromodulatory role of interleukin-1beta in the hippocampus. Proc. Natl. Acad. Sci. USA 95, 7778– 7783 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abe, K. & Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16, 1066–1071 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Andreasson, K. & Worley, P. F. Induction of beta-A activin expression by synaptic activity and during neocortical development. Neuroscience 69, 781–796 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, J. H. & Kelly, P. T. Postsynaptic injection of Ca2+/CaM induces synaptic potentiation requiring CaMKII and PKC activity. Neuron 15, 443–452 (1995).

    Article  PubMed  Google Scholar 

  36. Chen, S. J., Sweatt, J. D. & Klann, E. Enhanced phosphorylation of the postsynaptic protein kinase C substrate RC3/neurogranin during long-term potentiation. Brain Res. 749, 181–187 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Schurmans, S. et al. Impaired long-term potentiation induction in dentate gyrus of calretinin-deficient mice. Proc. Natl. Acad. Sci. USA 94, 10415–10420 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Benowitz, L. I. & Routtenberg, A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 20, 84–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Roder, J. K., Roder, J. C. & Gerlai, R. Memory and the effect of cold shock in the water maze in S100 beta transgenic mice. Physiol. Behav. 60, 611–615 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Kapur, A., Yeckel, M. F., Gray, R. & Johnston, D. L-type calcium channels are required for one form of hippocampal mossy fiber LTP. J. Neurophysiol. 79, 2181–2190 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Parent, A. et al. Synaptic transmission and hippocampal long-term potential in olfactory cyclic nucleotide-gated channel type 1 null mouse. J. Neurophysiol. 79, 3295–3301 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Mullany, P. M. & Lynch, M. A. Evidence for a role for synaptophysin in expression of long-term potentiation in rat dentate gyrus. Neuroreport 9, 2489– 2494 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Lledo, P. M., Zhang, X., Sudhof, T. C., Malenka, R. C. & Nicoll, R. A. Postsynaptic membrane fusion and long-term potentiation. Science 279, 399–403 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Castillo, P. E. et al. Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature 388, 590– 593 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Hicks, A. et al. Synapsin I and syntaxin 1B: key elements in the control of neurotransmitter release are regulated by neuronal activation and long-term potentiation in vivo. Neuroscience 79, 329– 340 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Roberts, L. A., Morris, B. J. & O'Shaughnessy, C. T. Involvement of two isoforms of SNAP-25 in the expression of long-term potentiation in the rat hippocampus. Neuroreport 9, 33–36 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Migaud, M. et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396, 433–439 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Chiang, M. Y. et al. An essential role for retinoid receptors RARb and RXRg in long-term potentiation and depression. Neuron 21, 1353–1361 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Williams, J. et al. Krox20 may play a key role in the stabilization of long-term potentiation. Mol. Brain Res. 28, 87– 93 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Gao, W. Q. et al. Regulation of hippocampal synaptic plasticity by the tyrosine kinase receptor, REK7/EphA5, and its ligand, AL-1/Ephrin-A5. Mol. Cell. Neurosci. 11, 247–259 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Cremer, H. et al. Long-term but not short-term plasticity at mossy fiber synapses is impaired in neural cell adhesion molecule-deficient mice. Proc. Natl. Acad. Sci. USA 95, 13242–13247 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tang, L., Hung, C. P. & Schuman, E. M. A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. Neuron 20, 1165–1175 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Nosten-Bertrand, M. et al. Normal spatial learning despite regional inhibition of LTP in mice lacking Thy-1. Nature 379, 826– 829 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Sakurai, E. et al. Involvement of dendritic adhesion molecule telencephalin in hippocampal long-term potentiation. Neuroreport 9, 881–886 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Luthi, A., Mohajeri, H., Schachner, M. & Laurent, J. P. Reduction of hippocampal long-term potentiation in transgenic mice ectopically expressing the neural cell adhesion molecule L1 in astrocytes. J. Neurosci. Res. 46, 1–6 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Lauri, S. E., Rauvala, H., Kaila, K. & Taira, T. Effect of heparin-binding growth-associated molecule (HB-GAM) on synaptic transmission and early LTP in rat hippocampal slices. Eur. J. Neurosci. 10, 188–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Bahr, B. A. et al. Arg-Gly-Asp-Ser-selective adhesion and the stabilization of long-term potentiation: pharmacological studies and the characterization of a candidate matrix receptor. J. Neurosci. 17, 1320–1329 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang, A. M., Wang, H. L., Tang, Y. P. & Lee, E. H. Expression of integrin-associated protein gene associated with memory formation in rats. J. Neurosci. 18, 4305–4313 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nakic, M., Manahanvaughan, D., Reymann, K. G. & Schachner, M. Long-term potentiation in vivo increases rat hippocampal Tenascin-C expression. J. Neurobiol. 37, 393– 404 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Becker, C. G. et al. The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long-term potentiation. J. Neurosci. Res. 45, 143– 152 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Furuse, H. et al. Effect of the mono- and tetra-sialogangliosides, GM1 and GQ1B, on long-term potentiation in the CA1 hippocampal neurons of the guinea pig. Exp. Brain. Res. 123, 307– 314 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Jun, K. S. et al. Enhanced hippocampal CA1 LTP but normal spatial learning in inositol 1,4,5-trisphophate 3-kinase(A)-deficient mice. Learn. Mem. 5, 317–330 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. English, J. D. & Sweatt, J. D. A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J. Biol. Chem. 272, 19103– 19106 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Lu, Y. M., Roder, J. C., Davidow, J. & Salter, M. W. Sr c activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science 279, 1363– 1367 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Grant, S. G. et al. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258, 1903–1910 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. Impey, S. et al. Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21, 869–883 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Qi, M. et al. Impaired hippocampal plasticity in mice lacking the Cβ1 catalytic subunit of cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. 93, 1571–1576 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang, Y. Y. et al. A genetic test of the effects of mutations in PKA on mossy fiber LTP and its relation to spatial and contextual learning. Cell 83, 1211–1222 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  70. Abeliovich, A. et al. Modified hippocampal long-term potentiation in PKC gamma-mutant mice. Cell 75, 1253–1262 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Zhuo, M., Hu, Y., Schultz, C., Kandel, E. R. & Hawkins, R. D. Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation. Nature 368, 635–639 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Osten, P., Valsamis, L., Harris, A. & Sacktor, T. C. Protein synthesis-dependent formation of protein kinase Mζ in long-term potentiation. J. Neurosci. 16, 2444–2451 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tokuda, M. et al. Involvement of calmodulin-dependent protein kinases-I and -IV in long-term potentiation. Brain Res. 755, 162–166 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Mayford, M. et al. Control of memory formation through regulated expression of a CaMKII transgene. Science 274, 1678– 1683 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Chen, W. et al. Surface protein phosphorylation by ecto-protein kinase is required for the maintenance of hippocampal long-term potentiation. Proc. Natl. Acad. Sci. USA 93, 8688–8693 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vanderklish, P., Saido, T. C., Gall, C., Arai, A. & Lynch, G. Proteolysis of spectrin by calpain accompanies theta-burst stimulation in cultured hippocampal slices. Mol. Brain Res. 32, 25–35 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Muller, D., Molinari, I., Soldati, L. & Bianchi, G. A genetic deficiency in calpastatin and isovalerylcarnitine treatment is associated with enhanced hippocampal long-term potentiation. Synapse 19, 37–45 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Luthi, A. et al. Endogenous serine protease inhibitor modulates epileptic activity and hippocampal long-term potentiation. J. Neurosci. 17, 4688–4699 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang, Y. Y. et al. Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc. Natl. Acad. Sci. USA 93, 8699–8704 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mizutani, A., Saito, H. & Matsuki, N. Possible involvement of plasmin in long-term potentiation of rat hippocampal slices. Brain Res. 739, 276–281 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Jiang, Y. H. et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic P53 and deficits of contextual learning and long-term potentiation. Neuron 21, 799–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Wolf, M. J., Izumi, Y., Zorumski, C. F. & Gross, R. W. Long-term potentiation requires activation of calcium-independent phospholipase A2. FEBS Lett. 377, 358– 362 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. McGahon, B. & Lynch, M. A. Analysis of the interaction between arachidonic acid and metabotropic glutamate receptor activation reveals that phospholipase C acts as a coincidence detector in the expression of long-term potentiation in the rat dentate gyrus. Hippocampus 8, 48–56 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Schuman, E. M., Meffert, M. K., Schulman, H. & Madison, D. V. An ADP-ribosyltransferase as a potential target for nitric oxide action in hippocampal long-term potentiation. Proc. Natl. Acad. Sci. USA 91, 11958–11962 ( 1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, J. H. & Kelly, P. T. Postsynaptic calcineurin activity downregulates synaptic transmission by weakening intracellular Ca2+ signaling mechanisms in hippocampal CA1 neurons. J. Neurosci. 17, 4600–4611 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Blitzer, R. D. et al. Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 280, 1940– 1942 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Appleyard, M. E. Acetylcholinesterase induces long-term potentiation in CA1 pyramidal cells by a mechanism dependent on metabotropic glutamate receptors. Neurosci. Lett. 190, 25–28 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Wu, Z. L. et al. Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc. Natl. Acad. Sci. USA 92, 220–224 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. McCall, M. A. et al. Targeted deletion in astrocyte intermediate filament (GFAP) alters neuronal physiology. Proc. Natl. Acad. Sci. USA 93, 6361–6366 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Beilharz, E. J. et al. Neuronal activity induction of the stathmin-like gene RB3 in the rat hippocampus — possible role in neuronal plasticity. J. Neurosci. 18, 9780–9789 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Steel, M. et al. Gene-trapping to identify and analyze genes expressed in the mouse hippocampus. Hippocampus 8, 444– 457 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Walther, T. et al. Sustained long term potentiation and anxiety in mice lacking the Mas protooncogene. J. Biol. Chem. 273, 11867–11873 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Kato, A., Ozawa, F., Saitoh, Y., Hirai, K. & Inokuchi, K. Vesl, a gene encoding VASP/Ena family related protein, is upregulated during seizure, long-term potentiation and synaptogenesis. FEBS Lett. 412, 183–189 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Bliss, T. V. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  95. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361 , 31–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  96. Cotman, C. W. & Monaghan, D. T. Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. Annu. Rev. Neurosci. 11, 61–80 ( 1988).

    Article  CAS  PubMed  Google Scholar 

  97. Bear, M. F. & Kirkwood, A. Neocortical long-term potentiation. Curr. Opin. Neurobiol. 3, 197– 202 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133– 1138 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Lisman, J. The CaM kinase II hypothesis for the storage of synaptic memory. Trends Neurosci. 17, 406–412 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. Spillane, D. M., Rosahl, T. W., Sudhof, T. C. & Malenka, R. C. Long-term potentiation in mice lacking synapsins. Neuropharmacology 34, 1573–1579 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  101. Claiborne, B. J., Xiang, Z. & Brown, T. H. Hippocampal circuitry complicates analysis of long-term potentiation in mossy fiber synapses. Hippocampus 3 , 115–121 (1993).

    Article  CAS  PubMed  Google Scholar 

  102. Winder, D. G., Mansuy, I. M., Osman, M., Moallem, T. M. & Kandel, E. R. Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell 92, 25–37 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  103. Cavus, I. & Teyler, T. J. NMDA receptor-independent LTP in basal versus apical dendrites of CA1 pyramidal cells in rat hippocampal slice. Hippocampus 8, 373– 379 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Henning, R. H. Purinoceptors in neuromuscular transmission. Pharmacol. Therapeutics 74, 115–128 ( 1997).

    Article  CAS  Google Scholar 

  105. Umemori, H., Sato, S., Yagi, T., Aizawa, S. & Yamamoto, T. Initial events of myelination involve Fyn tyrosine kinase signalling. Nature 367, 572– 576 (1994).

    Article  CAS  PubMed  Google Scholar 

  106. Kojima, N. et al. Rescuing impairment of long-term potentiation in fyn-deficient mice by introducing fyn transgene. Proc. Natl. Acad. Sci. USA 94, 4761–4765 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Williams, J. H. et al. The suppression of long-term potentiation in rat hippocampus by inhibitors of nitric oxide synthase is temperature and age dependent. Neuron 11, 877–884 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  108. Warren, S. G., Humphreys, A. G., Juraska, J. M. & Greenough, W. T. LTP varies across the estrous cycle: enhanced synaptic plasticity in proestrus rats. Brain Res. 703, 26– 30 (1995).

    Article  CAS  PubMed  Google Scholar 

  109. Shankar, S., Teyler, T. J. & Robbins, N. Aging differentially alters forms of long-term potentiation in rat hippocampal area CA1. J. Neurophysiol. 79, 334–341 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Bronzino, J. D., Kehoe, P., Austin-LaFrance, R. J., Rushmore, R. J. & Kurdian, J. Neonatal isolation alters LTP in freely moving juvenile rats: sex differences. Brain Res. Bull. 41, 175–183 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  111. Crepel, V., Hammond, C., Krnjevic, K., Chinestra, P. & Ben-Ari, Y. Anoxia-induced LTP of isolated NMDA receptor-mediated synaptic responses. J. Neurophysiol. 69, 1774–1778 (1993).

    Article  CAS  PubMed  Google Scholar 

  112. Izumi, Y., Katsuki, H. & Zorumski, C. F. Monocarboxylates (pyruvate and lactate) as alternative energy substrates for the induction of long-term potentiation in rat hippocampal slices. Neurosci. Lett. 232, 17– 20 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Gerlai, R. Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci. 19, 177– 181 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Kirov, S. E., Sorra, K. E. & Harris, K. M. Slices have more synapses than perfusion-fixed hippocampus from both young and mature rats. J. Neurosci. 19, 2876–2886 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Vizi, E. S. & Kiss, J. P. Neurochemistry and pharmacology of the major hippocampal transmitter systems: Synaptic and nonsynaptic interactions. Hippocampus 8, 566–607 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Kullman, D. M. & Siegelbaum, S. A. The site of expression of NMDA receptor-dependent LTP: new fuel for an old fire. Neuron 15, 997–1002 ( 1995).

    Article  Google Scholar 

  118. Kullmann, D. M. & Asztely, F. Extrasynaptic glutamate spillover in the hippocampus — evidence and implications. Trends Neurosci. 21, 8– 14 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Bonhoeffer, T., Kossel, A., Bolz, J. & Aertsen, A. Modified Hebbian rule for synaptic enhancement in the hippocampus and the visual cortex. Cold Spring Harb. Symp. Quant. Biol. 55, 137– 146 (1990).

    Article  CAS  PubMed  Google Scholar 

  120. Hodgkin, A. L. Chance and design in electrophysiology: an informal account of certain experiments on nerve carried out between 1934 and 1952. J. Physiol. (Lond.) 263, 1–21 ( 1976).

    Article  CAS  Google Scholar 

  121. Katz, B. Neural transmitter release: from quantal secretion to exocytosis and beyond. The Fenn Lecture. J. Neurocytol. 25, 677 –686 (1996).

    Article  CAS  PubMed  Google Scholar 

  122. Dudel, J. & Kuffler, S. W. Presynaptic inhibition at the crayfish neuromuscular junction. J. Physiol. (Lond.) 155, 543–562 (1961).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joshua R. Sanes or Jeff W. Lichtman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanes, J., Lichtman, J. Can molecules explain long-term potentiation?. Nat Neurosci 2, 597–604 (1999). https://doi.org/10.1038/10154

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing