Neuron
Volume 52, Issue 3, 9 November 2006, Pages 425-436
Journal home page for Neuron

Neurotechnique
Refined Spatial Manipulation of Neuronal Function by Combinatorial Restriction of Transgene Expression

https://doi.org/10.1016/j.neuron.2006.08.028Get rights and content
Under an Elsevier user license
open archive

Summary

Selective genetic manipulation of neuronal function in vivo requires techniques for targeting gene expression to specific cells. Existing systems accomplish this using the promoters of endogenous genes to drive expression of transgenes directly in cells of interest or, in “binary” systems, to drive expression of a transcription factor or recombinase that subsequently activates the expression of other transgenes. All such techniques are constrained by the limited specificity of the available promoters. We introduce here a combinatorial system in which the DNA-binding (DBD) and transcription-activation (AD) domains of a transcription factor are independently targeted using two different promoters. The domains heterodimerize to become transcriptionally competent and thus drive transgene expression only at the intersection of the expression patterns of the two promoters. We use this system to dissect a neuronal network in Drosophila by selectively targeting expression of the cell death gene reaper to subsets of neurons within the network.

MOLNEURO

Cited by (0)