Biophysical Journal
Volume 60, Issue 1, July 1991, Pages 217-237
Journal home page for Biophysical Journal

Research Article
Light adaptation in turtle cones. Testing and analysis of a model for phototransduction

https://doi.org/10.1016/S0006-3495(91)82045-8Get rights and content
Under a Creative Commons license
open archive

Light adaptation in cones was characterized by measuring the changes in temporal frequency responses to sinusoidal modulation of light around various mean levels spanning a range of four log units. We have shown previously that some aspects of cone adaptation behavior can be accounted for by a biochemical kinetic model for phototransduction in which adaptation is mediated largely by a sigmoidal dependence of guanylate cyclase activity on the concentration of free cytoplasmic Ca2+, ([Ca2+]i) (Sneyd and Tranchina, 1989). Here we extend the model by incorporating electrogenic Na+/K+ exchange, and the model is put to further tests by simulating experiments in the literature. It accounts for (a) speeding up of the impulse response, transition from monophasic to biphasic waveform, and improvement in contrast sensitivity with increasing background light level, I0; (b) linearity of the response to moderate modulations around I0; (c) shift of the intensity-response function (linear vs. log coordinates) with change in I0 (Normann and Perlman, 1979); the dark-adapted curve adheres closely to the Naka-Rushton equation; (d) steepening of the sensitivity vs. I0 function with [Ca2+]i fixed at its dark level, [Ca2+]i dark; (Matthews et al., 1988, 1990); (e) steepening of the steady-state intensity-response function when [Ca2+]i is held fixed at its dark level (Matthews et al., 1988; 1990); (f) shifting of a steep template saturation curve for normalized photocurrent vs. light-step intensity when the response is measured at fixed times and [Ca2+]i is held fixed at [Ca2+]i dark (Nakatani and Yau, 1988). Furthermore, the predicted dependence of guanylate cyclase activity on [Ca2+] closely matches a cooperative inhibition equation suggested by the experimental results of Koch and Stryer (1988) on cyclase activity in bovine rods. Finally, the model predicts that some changes in response kinetics with background light will still be present, even when [Ca2+]i is held fixed at [Ca2]i dark.

Cited by (0)