Skip to main content

Advertisement

Log in

Reproductive axis response to repeated lipopolysaccharide administration in peripubertal female rats

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Immune system disorders are often accompanied by alterations in the reproductive axis. Several reports have shown that administration of bacterial lipopolysaccharide (LPS) has central inflammatory effects and activates cytokine release in the hypothalamus where the luteinizing hormone releasing hormone (Gn-RH) neurons are located. The present study was designed to investigate the effect of repeated LPS administration on the neuroendocrine mechanisms of control of the reproductive axis in peripubertal female rats (30-day-old rats). With this aim, LPS (50 μg/kg weight) was administered to the animals during 25, 27 and 29 days of age and sacrificed on 30 day of life. Gn-RH, γ−amino butyric acid (GABA) and glutamic acid (GLU), two amino acids involved in the regulation of Gn-RH secretion, hypothalamic content were measured. LH and estradiol serum levels were also determined and the day of vaginal opening examined. The results showed a significant increase in Gn-RH and GLU content (p < 0.0001), shared by a reduction of GABA one (p < 0.0001). LH and estradiol serum levels were decreased (p < 0.01, p < 0.001) and delay in the day of vaginal opening was also observed in treated animals. Present results show that repeated LPS administration impaired reproductive function, modifying the neuroendocrine mechanisms of control of the axis in peripubertal female rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arai KI, Lee F, Miyajima A, Miyatake S, Arai N, Yokota T (1990) Coordinators of immune and inflammatory responses. Annu Rev Biochem 59:783–836

    Article  CAS  PubMed  Google Scholar 

  2. Battaglia DF, Bowen JM, Krasa HK, Thrun LA, Viguié C, Karsch FJ (1997) Endotoxin inhibits the reproductive neuroendocrine axis while stimulating adrenal steroids: a simultaneous view from hypophyseal portal and peripheral blood. Endocrinology 138:4273–4281

    Article  CAS  PubMed  Google Scholar 

  3. Besedovsky HO, del Rey A (1996) Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev 17:64–102

    CAS  PubMed  Google Scholar 

  4. Castellano JM, Bentsen AH, Romero M, Pineda R, Ruiz-Pino F, Garcia-Galiano D, Sanchez-Garrido MA, Pinilla L, Mikkelsen JD, Tena-Sempere M (2010) Acute inflammation reduces kisspeptin immunoreactivity at the arcuate nucleus and decreases responsiveness to kisspeptin independently of its anorectic effects. Am J Physiol Endocrinol Metab (in press)

  5. Chautard T, Spinedi E, Voirol M, Pralong FP, Gaillard RC (1999) Role of glucocorticoids in the response of the hypothalamo-corticotrope, immune systems to repeated endotoxin administration. Neuroendocrinology 69(5):360–369

    Article  CAS  PubMed  Google Scholar 

  6. Colledge WH (2009) Kisspeptins and GnRH neuronal signalling. Trends Endocrinol Metab 20(3):115–121

    Article  CAS  PubMed  Google Scholar 

  7. Croxson TS, Chapman WE, Miller LK, Levit CD, Senie R, Zumoff B (1989) Changes in the hypothalamic-pituitary-gonadal axis in human immunodeficiency virus-infected homosexual men. J Clin Endocrinol Metab 68:317–332

    Article  CAS  PubMed  Google Scholar 

  8. de Roux N, Genin E, Carel J-C, Matsuda F, Chaussain J-L, Milgrom E (2003) Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 100:10972–10976

    Article  PubMed  Google Scholar 

  9. DeFazio RA, Heger S, Ojeda SR, Moenter SM (2002) Activation of A-type gamma-amino butyric acid receptors excites gonadotropin-releasing hormone neurons. Mol Endocrinol 16:2872–2891

    Article  CAS  PubMed  Google Scholar 

  10. Ebisui O, Fukata J, Tominaga T, Murakami N, Kobayashi H, Segawa H, Muro S, Naito Y, Nakai Y, Masui Y et al (1992) Role of interleukin-1 alpha and -1 beta in endotoxin-induced suppression of plasma gonadotropins levels in rats. Endocrinology 130:3307–3313

    Article  CAS  PubMed  Google Scholar 

  11. Feleder C, Jarry H, Leonhardt S, Moguilevsky JA, Wuttke W (1996) Effects of endotoxin on in vitro release of LHRH and amino acid neurotransmitters by preoptic mediobasal hypothalamic fragments. Neuroimmunomodulation 3(2–3):76–81

    Article  CAS  PubMed  Google Scholar 

  12. Feleder C, Jarry H, Leonhardt S, Wuttke W, Moguilevsky JA (1996) The GABAergic control of gonadotropin-releasing hormone secretion in male rats during sexual maturation involves effects on hypothalamic excitatory and inhibitory amino acid systems. Neuroendocrinology 64:305–312

    Article  CAS  PubMed  Google Scholar 

  13. Feleder C, Refojo D, Jarry H, Wuttke W, Moguilevsky JA (1996) Bacterial endotoxin inhibits LH-RH secretion following the increased release of hypothalamic GABA levels. Different effects on amino acid neurotransmitter release. Neuroimmunomodulation 3(6):342–351

    Article  CAS  PubMed  Google Scholar 

  14. Feleder C, Refojo D, Nacht S, Moguilevsky JA (1998) Interleukin-1 stimulates hypothalamic inhibitory amino acid neurotransmitter release. Neuroimmunomodulation 5(1–2):1–4

    Article  CAS  PubMed  Google Scholar 

  15. Feleder C, Ginzburg M, Wuttke W, Moguilevsky JA, Arias P (1999) GABAergic activation inhibits the hypothalamic-pituitary-ovaric axis and sexual development in the immature female rat. Associated changes in hypothalamic glutamatergic and taurinergic systems. Dev Brain Res 116:151–157

    Article  CAS  Google Scholar 

  16. Feleder C, Arias P, Refojo D, Nacht S, Moguilevsky J (2000) Age-related differences in the effects of bacterial endotoxin (LPS) upon the release of LH-RH, gonadotropins and hypothalamic inhibitory amino acid neurotransmitters measured in tissues explanted from intact male rats. Exp Clin Endocrinol Diabetes 108:220–227

    Article  CAS  PubMed  Google Scholar 

  17. Feleder C, Arias P, Refojo D, Nacht S, Moguilevsky J (2000) Interleukin-1 inhibits NMDA-stimulated Gn-RH secretion: associated effects on the release of hypothalamic inhibitory amino acid neurotransmitters. Neuroimmunomodulation 7:46–50

    Article  CAS  PubMed  Google Scholar 

  18. Gillard RC (2003) Interactions between the immune and neuroendocrine systems: clinical implications. J Soc Biol 197(2):89–95

    Google Scholar 

  19. Goroll D, Arias P, Wuttke W (1994) Ontogenic changes in the hypothalamic levels of amino acid neurotransmitters in the female rat. Dev Brain Res 77:183–188

    Article  CAS  Google Scholar 

  20. Grunfeld C, Zhao C, Fuller J, Pollack A, Moser A, Friedman J, Feingold KR (1996) Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. J Clin Invest 97:2152–2157

    Article  CAS  PubMed  Google Scholar 

  21. Iwasa T, Matsuzaki T, Murakami M, Shimizu F, Kuwahara A, Yasui T, Irahara M (2008) Decreased expression of kisspeptin mediates acute immune/inflammatory stress-induced suppression of gonadotropin secretion in female rat. J Endocrinol Investig 31(7):656–659

    CAS  Google Scholar 

  22. Kalra PS, Edwards TG, Xu B, Jain M, Kalra SP (1998) The anti-gonadotropic effects of cytokines: the role of neuropeptides. Domest Anim Endocrinol 15:321–332

    Article  CAS  PubMed  Google Scholar 

  23. Karsch FJ, Battaglia DF, Breen KM, Debus N, Harris TG (2002) Mechanisms for ovarian cycle disruption by immune/inflammatory stress. Stress 5:101–112

    Article  CAS  PubMed  Google Scholar 

  24. Maffucci JA, Gore AC (2009) Hypothalamic neural systems controlling the female reproductive life cycle: gonadotropin-releasing hormone, glutamate, and GABA. Int Rev Cell Mol Biol 274:69–127

    Article  CAS  PubMed  Google Scholar 

  25. McCann SM, Kimura M, Karanth S, Yu WH, Mastronardi CA, Rettori V (2000) The mechanism of action of cytokines to control the release of hypothalamic and pituitary hormones in infection. Ann NY Acad Sci 917:4–18

    Article  CAS  PubMed  Google Scholar 

  26. Meister B, Hökfelt T, Geffard M, Oertel W (1988) Glutamic acid decarboxylase- and gamma-aminobutyric acid-like immunoreactivities in corticotrophin-releasing factor-containing parvocellular neurons of the hypothalamic paraventricular nucleus. Neuroendocrinology 48(5):516–526

    Article  CAS  PubMed  Google Scholar 

  27. Mitsushima D, Kimura F (1997) The maturation of GABA A receptor-mediated control of luteinizing hormone secretion in immature male rats. Brain Res 748:258–262

    Article  CAS  PubMed  Google Scholar 

  28. Mitsushima D, Hei DL, Terasawa E (1994) Aminobutyric acid is an inhibitory neurotransmitter restricting the release of luteinizing hormone-releasing hormone before the onset of puberty. Proc Natl Acad Sci USA 91:395–399

    Article  CAS  PubMed  Google Scholar 

  29. Moenter SM, DeFazio RA (2005) Endogenous gamma-aminobutyric acid can excite gonadotropin releasing hormone neurons. Endocrinology 146:5374–5379

    Article  CAS  PubMed  Google Scholar 

  30. Moguilevsky JA, Wuttke W (2001) Changes in the control of gonadotropin secretion by neurotransmitters during sexual development in rats. Exp Clin Endocrinol Diabetes 109:188–195

    Article  CAS  PubMed  Google Scholar 

  31. Ojeda S, Urbansky H (1994) Puberty in the rat. In: Knobil E, Neill JD (eds) The physiology of reproduction, 2nd edn. Raven Press, New York, pp 363–399

    Google Scholar 

  32. Ojeda SR, Lomniczi A, Mastronardi C, Heger S, Roth C, Parent A-S, Matagne V, Mungenast AE (2006) Minireview: the neuroendocrine regulation of puberty: is the time ripe for a systems biology approach? Endocrinology 147:1166–1174

    Article  CAS  PubMed  Google Scholar 

  33. Peter AT, Bosu WTK, DeDecher RJ (1989) Suppression of preovulatory luteinizing hormone surges in heifers after intrauterine infusions of Escherichia coli endotoxin. Am J Vet Res 50:368–373

    CAS  PubMed  Google Scholar 

  34. Pielecka-Fortuna J, Moenter SM (2010) Kisspeptin increases aminobutyric acidergic and glutamatergic transmission directly to gonadotropin-releasing hormone neurons in an estradiol-dependent manner. Endocrinology 151(1):291–300

    Article  CAS  PubMed  Google Scholar 

  35. Plata-Salaman CR, Borkoski JP (1994) Chemokines, intercrines and central regulation of feeding. Am J Physiol 266:1711–1715

    Google Scholar 

  36. Ponzo OJ, Szwarcfarb B, Rondina D, Carbone S, Reynoso R, Scacchi P, Moguilevsky JA (2001) Changes in the sensitivity of gonadotrophin axis to leptin during sexual maturation in female rats. Neuroendocrinol Lett 22:427–431

    CAS  PubMed  Google Scholar 

  37. Redl H, Bahrami S, Schlag G, Traber DL (1993) Clinical detection of LPS and animal models of endotoxemia. Immunobiology 187:330–345

    CAS  PubMed  Google Scholar 

  38. Refojo D, Arias P, Moguilevsky JA, Feleder C (1998) Effect of bacterial endotoxin on in vivo pulsatile gonadotropin secretion in adult male rats. Neuroendocrinology 67(4):275–281

    Article  CAS  PubMed  Google Scholar 

  39. Reynoso R, Ponzo OJ, Szwarcfarb B, Rondina D, Carbone S, Rimoldi G, Scacchi P, Moguilevsky JA (2003) Effect of leptin on hypothalamic release of Gn-RH and neurotransmitter amino acids during sexual maturation in female rats. Exp Clin Endocrinol Diabetes 111:274–277

    Article  CAS  PubMed  Google Scholar 

  40. Reynoso R, Cardoso N, Szwarcfarb B, Carbone S, Ponzo O, Moguilevsky J, Scacchi P (2007) Nitric oxide synthase inhibition prevents leptin induced Gn-RH release in prepubertal and peripubertal female rats. Exp Clin Endocrinol Diabetes 115:423–427

    Article  CAS  PubMed  Google Scholar 

  41. Reynoso R, Ponzo O, Cardoso N, Szwarcfarb B, Carbone S, Moguilevsky J, Scacchi P (2008) Effect of bacterial lipopolysaccharide on the reproductive axis of prepubertal and peripubertal female rats. Ontogenic changes in the immune-neuroendocrine interactions. Neuroimmunomodulation 15:125–130

    CAS  PubMed  Google Scholar 

  42. Rivest S, Rivier C (1995) The role of corticotrophin-releasing factor and interleukin-1 in the regulation of neurons controlling reproductive functions. Endocr Rev 16:177–199

    CAS  PubMed  Google Scholar 

  43. Rivest S, Lee S, Attardi B, Rivier C (1993) The chronic intracerebroventricular infusion of interleukin-1 [beta] alters the activity of the hypothalamic-pituitary-gonadal axis of cycling rats. Effect on LHRH and gonadotropin biosynthesis and secretion. Endocrinology 133:2424–2430

    Article  CAS  PubMed  Google Scholar 

  44. Rivier C, Vale W (1990) Cytokines act within the brain to inhibit luteinizing hormone secretion and ovulation in the rat. Endocrinology 127:849–856

    Article  CAS  PubMed  Google Scholar 

  45. Roseweir AK, Millar RP (2009) The role of kisspeptin in the control of gonadotrophin secretion. Hum Reprod Update 15(2):203–212

    Article  CAS  PubMed  Google Scholar 

  46. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MB, Crowley WF Jr, Aparicio SA, Colledge WH (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349:1614–1627

    Article  CAS  PubMed  Google Scholar 

  47. Smith JT, Acohido BV, Clifton DK, Steiner RA (2006) KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol 18:298–303

    Article  CAS  PubMed  Google Scholar 

  48. Spinedi E, Suescun MO, Hadid R, Duneva T, Gaillard RC (1992) Effects of gonadectomy and sex hormone therapy on the endotoxin stimulated hypothalamo-pituitary-adrenal axis: evidence for a neuroendocrine-immunological sexual dimorphism. Endocrinology 13:2430–2436

    Article  Google Scholar 

  49. Spinedi E, Chisari A, Pralong F, Gaillard RC (1997) Sexual dimorphism in the mouse hypothalamic-pituitary-adrenal axis function after endotoxin and insulin stresses during development. Neuroimmunomodulation 4(2):77–83

    CAS  PubMed  Google Scholar 

  50. Taylor CC, Terranova PF (1995) Lipopolysaccharide inhibits rat ovarian tecal-interstitial cell steroid secretion in vitro. Endocrinology 136(12):5527–5532

    Article  CAS  PubMed  Google Scholar 

  51. Taylor CC, Terranova PF (1996) Lipopolysaccharide inhibits in vitro luteinizing hormone stimulated rat ovarian granulosa cell estradiol but not progesterone secretion. Biol Reprod 54(6):1390–1396

    Article  CAS  PubMed  Google Scholar 

  52. Tena-Sempere M (2006) Kiss-1 and reproduction: focus on its role in the metabolic regulation of fertility. Neuroendocrinology 83:275–281

    Article  CAS  PubMed  Google Scholar 

  53. Tena-Sempere M (2010) Kisspeptins and the metabolic control of reproduction: physiologic roles and physiopathological implications. Ann Endocrinol (Paris) 71(3):201–202

    CAS  Google Scholar 

  54. Terasawa E (1999) Hypothalamic control of the onset of puberty. Curr Opin Endocrinol Diabetes 6:44–49

    Article  Google Scholar 

  55. Terasawa E, Fernandez DL (2001) Neurobiological mechanisms of the onset of puberty in primates. Endocr Rev 22(1):111–151

    Article  CAS  PubMed  Google Scholar 

  56. Thomas L (1958) Physiologic and pathologic alterations produced by endotoxins of Gram-negative bacteria. AMA Arch Intern Med 101:452–459

    CAS  PubMed  Google Scholar 

  57. Tilders FJH, DeRijk RH, Van Dam A, Vincent VAM, Schotanus K, Persoons JHA (1994) Activation of the hypothalamus-pituitary-adrenal axis by bacterial endotoxins: routes and intermediate signals. Psyconeuroendocrinology 19:209–232

    Article  CAS  Google Scholar 

  58. Urbanski HF, Ojeda SR (1990) A role for N-methyl-D-aspartate (NMDA) receptors in the control of LH secretion and initiation of female puberty. Endocrinology 126:1774–1776

    Article  CAS  PubMed  Google Scholar 

  59. Warner BA, Dufau ML, Santen RJ (1985) Effects of aging and illness on the pituitary testicular axis in men: qualitative as well as quantitative changes in luteinizing hormone. J Clin Endocrinol Metab 60:263–268

    Article  CAS  PubMed  Google Scholar 

  60. Wong ML, Rettori V, al-Shekhlee A, Bongiorno PB, Canteros G, McCann SM, Gold PW, Licinio J (1996) Inducible nitric oxide synthase gene expression in the brain during systemic inflammation. Nat Med 2:581–584

    Article  CAS  PubMed  Google Scholar 

  61. Xiao E, Xia-Zhang L, Barth A, Zhu J, Perin M (1998) Stress and the menstrual cycle: relevance of quality in the short- and long-term response to a 5-day endotoxin challenge during the follicular phase in the rhesus monkey. J Clin Endocrinol Metab 83:2454–2460

    Article  CAS  PubMed  Google Scholar 

  62. Yin C, Ishii H, Tanaka N, Sakuma Y, Kato M (2008) Activation of A-type gamma-amino butyric acid receptors excites gonadotrophin-releasing hormone neurones isolated from adult rats. J Neuroendocrinol 20:566–575

    Article  CAS  PubMed  Google Scholar 

  63. Zhang C, Bosch MA, Rønnekleiv OK, Kelly MJ (2009) γ-Aminobutyric acid B receptor-mediated inhibition of gonadotropin-releasing hormone neurons is suppressed by kisspeptin-G protein-coupled receptor 54 signaling. Endocrinology 150(5):2388–2394

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Agencia Nacional de Promoción Científica, the R. Carrillo-A. Oñativia fellowship, the National Research Council and the University of Buenos Aires. We thank Susana Massaro for the manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roxana María Reynoso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardoso, N., Arias, P., Szwarcfarb, B. et al. Reproductive axis response to repeated lipopolysaccharide administration in peripubertal female rats. J Physiol Biochem 66, 237–244 (2010). https://doi.org/10.1007/s13105-010-0030-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-010-0030-x

Keywords

Navigation