Skip to main content
Log in

Prolonged Exposure to Isoflurane Ameliorates Infarction Severity in the Rat Pup Model of Neonatal Hypoxia-Ischemia

  • Protocols
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The neonatal hypoxia-ischemia rat model referred to as the Rice–Vannucci model is extensively used to study perinatal hypoxia-ischemia and child brain injury. One of the major weaknesses of this model is its inconsistency of brain infarction among animals. We hypothesize that the inconsistency of infarction is caused by prolonged operation time and therefore isoflurane exposure. Neonatal hypoxia-ischemia was induced in postnatal days 7 and 10 rat pups by unilateral right common carotid ligation followed by 2.5 h of hypoxia (8% oxygen). The incision-to-ligation (ITL) was defined as the amount of time from initial incision (4 min after 2% isoflurane exposure) to completion of carotid ligation (at which point isoflurane exposure was also terminated). In the first part of the study, the ITL of each group was designated to be 5, 13, and 21 min. In the second part of the study, the ITL is designated to 4 min; however, continued isoflurane was used to make 5, 13, and 21 min isoflurane exposure for each group. Percentages of brain infarction were assessed at 48 h following surgery. Motor deficits were accessed by Rotarod test. Marked brain infarction was observed in the 5-min ITL group and a decrease of brain infarction observed in the 13- and 21-min groups (P < 0.05). In the second part of the study, marked brain infarction was observed in the 5-min isoflurane exposure group, and a decrease of brain infarction was observed in each of the 13- and 21-min isoflurane exposure groups (P < 0.05). Similar tendencies were observed in Rotarod tests than 5-min ITL and 5-min isoflurane groups showed more marked deficits (P < 0.05). This study demonstrated that brain infarction inconsistency of the neonatal hypoxia-ischemia rat pup model is related to the operation time. The observed time-dependent decrease of brain infarction is correlated to the isoflurane exposure time. Shorter operation and isoflurane exposure improves this model consistency of brain infarction and motor deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahmad M, Graham SH. Inflammation after stroke: mechanisms and therapeutic approaches. Transl Stroke Res. 2010;1(2):74–84.

    Article  PubMed  CAS  Google Scholar 

  2. Bateman BT, Schumacher HC, Wang S, Shaefi S, Berman MF. Perioperative acute ischemic stroke in noncardiac and nonvascular surgery: incidence, risk factors, and outcomes. Anesthesiology. 2009;110:231–8.

    PubMed  Google Scholar 

  3. Bhardwaj A, Castro AF, Alkayed NJ, Hurn PD, Kirsch JR. Anesthetic choice of halothane versus propofol: impact on experimental perioperative stroke. Stroke. 2001;32:1920–5.

    Article  PubMed  CAS  Google Scholar 

  4. Chen ZY, Wang L, Asavaritkrai P, Noguchi CT. Up-regulation of erythropoietin receptor by nitric oxide mediates hypoxia preconditioning. J Neurosci Res. 2010;88(14):3180–8.

    Article  PubMed  CAS  Google Scholar 

  5. Dalkara T, Yoshida T, Irikura K, Moskowitz MA. Dual role of nitric oxide in focal cerebral ischemia. Neuropharmacology. 1994;33(11):1447–52.

    Article  PubMed  CAS  Google Scholar 

  6. Dietrich WD, Busto R, Alonso O, Globus MY, Ginsberg MD. Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. J Cereb Blood Flow Metab. 1993;13:541–9.

    Article  PubMed  CAS  Google Scholar 

  7. Dwyer BE, Nishimura RN, Fujikawa DG. Cerebral hypoxia-ischemia in immature rats: methodological considerations. Exp Neurol. 1988;99:772–7.

    Article  PubMed  CAS  Google Scholar 

  8. Garcia J, Yoshida Y, Chen H, Li Y, Zhang Z, Lian J, et al. Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol. 1993;142:623–35.

    PubMed  CAS  Google Scholar 

  9. Gidday JM, Shah AR, Maceren RG, Wang Q, Pelligrino DA, Holtzman DM, et al. Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning. J Cereb Blood Flow Metab. 1999;19(3):331–40.

    Article  PubMed  CAS  Google Scholar 

  10. Hamm RJ, Pike BR, O’Dell DM, Lyeth BG, Jenkins LW. The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J Neurotrauma. 1994;11(2):187–96.

    Article  PubMed  CAS  Google Scholar 

  11. Hattori H, Wasterlain CG. Posthypoxic glucose supplement reduces hypoxic-ischemic brain damage in the neonatal rat. Ann Neurol. 1990;28(2):122–8.

    Article  PubMed  CAS  Google Scholar 

  12. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science. 1994;265(5180):1883–5.

    Article  PubMed  CAS  Google Scholar 

  13. Ikonomidou C, Price MT, Mosinger JL, Friedrich G, Labruyere J, Salles KS, et al. Hypobaric-ischemic conditions produce glutamate-like cytopathology in infant rat brain. J Neurosci. 1989;9:1693–700.

    PubMed  CAS  Google Scholar 

  14. Johnston MV. Neonatal hypoxic-ischemic brain insults and their mechanisms. In: new concepts in cerebral ischemia. Boca Raton FL: CRC Press; 2002. p. 31–61.

    Google Scholar 

  15. Kapinya KJ, Lowl D, Futterer C, Maurer M, Waschke K, Isaev NK, et al. Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke. 2002;33:1889–98.

    Article  PubMed  CAS  Google Scholar 

  16. Kehl F, Payne RS, Roewer N, Schurr A. Sevoflurane-induced preconditioning of rat brain in vitro and the role of KATP channels. Brain Res. 2004;1021:76–81.

    Article  PubMed  CAS  Google Scholar 

  17. Kitano H, Kirsch JR, Hurn PD, Murphy SJ. Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. J Cereb Blood Flow Metab. 2007;27:1108–28.

    Article  PubMed  CAS  Google Scholar 

  18. Laptook AR, Corbett RJ. The effects of temperature on hypoxic-ischemic brain injury. Clin Perinatol. 2002;29:623–49.

    Article  PubMed  Google Scholar 

  19. Lee JJ, Li L, Jung HH, Zuo Z. Postconditioning with isoflurane reduced ischemia-induced brain injury in rats. Anesthesiology. 2008;108(6):1055–62.

    Article  PubMed  CAS  Google Scholar 

  20. Li L, Peng L, Zuo Z. Isoflurane preconditioning increases B-cell lymphoma-2 expression and reduces cytochrome c release from the mitochondria in the ischemic penumbra of rat brain. Eur J Pharmacol. 2008;586:106–13.

    Article  PubMed  CAS  Google Scholar 

  21. Lin T, He Y, Wu G, Khan M, Hsu C. Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke. 1993;24:117–21.

    Article  PubMed  CAS  Google Scholar 

  22. McAuliffe JJ, Joseph B, Vorhees CV. Isoflurane-delayed preconditioning reduces immediate mortality and improves striatal function in adult mice after neonatal hypoxia-ischemia. Anesth Analg. 2007;104:1066–77.

    Article  PubMed  CAS  Google Scholar 

  23. Nandagopal K, Dawson TM, Dawson VL. Critical role for nitric oxide signaling in cardiac and neuronal ischemic preconditioning and tolerance. J Pharmacol Exp Ther. 2001;297:474–8.

    PubMed  CAS  Google Scholar 

  24. Payne RS, Akca O, Roewer N, Schurr A, Kehl F. Sevoflurane-induced preconditioning protects against cerebral ischemic neuronal damage in rats. Brain Res. 2005;1034:147–52.

    Article  PubMed  CAS  Google Scholar 

  25. Ratan RR. Beyond neuroprotection to brain repair: exploring the next frontier in clinical neuroscience to expand the therapeutic window for stroke. Transl Stroke Res. 2010;1(2):71–3.

    Article  PubMed  Google Scholar 

  26. Rice 3rd JE, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol. 1981;9(2):131–41.

    Article  PubMed  Google Scholar 

  27. Rogers DC, Campbell CA, Stretton JL, Mackay KB. Correlation between motor impairment and infarct volume after permanent and transient middle cerebral artery occlusion in the rat. Stroke. 1997;28:2060–5.

    Article  PubMed  CAS  Google Scholar 

  28. Safar PJ, Kochanek PM. Therapeutic hypothermia after cardiac arrest. N Engl J Med. 2002;346:612–3.

    Article  PubMed  Google Scholar 

  29. Sakai H, Sheng H, Yates RB, Ishida K, Pearlstein RD, Warner DS. Isoflurane provides long-term protection against focal cerebral ischemia in the rat. Anesthesiology. 2007;106:92–9.

    Article  PubMed  CAS  Google Scholar 

  30. Schwartz PH, Massarweh WF, Vinters HV, Wasterlain CG. A rat model of severe neonatal hypoxic-ischemic brain injury. Stroke. 1992;23(4):539–46.

    Article  PubMed  CAS  Google Scholar 

  31. Silverstein F, Buchanan K, Johnston MV. Pathogenesis of hypoxic-ischemic brain injury in a perinatal rodent model. Neurosci Lett. 1984;49:271–7.

    Article  PubMed  CAS  Google Scholar 

  32. Trescher WH, Ishiwa S, Johnston MV. Brief post-hypoxic-ischemic hypothermia markedly delays neonatal brain injury. Brain Dev. 1997;19:326–38.

    Article  PubMed  CAS  Google Scholar 

  33. Wise-Faberowski L, Raizada K, Sumners C. Oxygen and glucose deprivation-induced neuronal apoptosis is attenuated by halothane and isoflurane. Anesth Analg. 2001;93:1281–7.

    Article  PubMed  CAS  Google Scholar 

  34. Xiong L, Zheng Y, Wu M, Hou L, Zhu Z, Zhang X, et al. Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of adenosine triphosphate-regulated potassium channels after focal cerebral ischemia in rats. Anesth Analg. 2003;96:233–7.

    PubMed  CAS  Google Scholar 

  35. Xu X, Feng J, Zuo Z. Isoflurane preconditioning reduces the rat NR8383 macrophage injury induced by lipopolysaccharide and interferon gamma. Anesthesiology. 2008;108:643–50.

    Article  PubMed  CAS  Google Scholar 

  36. Xu X, Kim JA, Zuo Z. Isoflurane preconditioning reduces mouse microglial activation and injury induced by lipopolysaccharide and interferon-gamma. Neuroscience. 2008;154:1002–8.

    Article  PubMed  CAS  Google Scholar 

  37. Zakhary R, Miller JA, Miller FS. Hypothermia, asphyxia, and brain carbohydrates in newborn puppies. Biol Neonate. 1967;11:36–49.

    Article  CAS  Google Scholar 

  38. Zhang RL, Chopp M, Chen H, Garcia JH. Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2 H) middle cerebral artery occlusion in the rat. J Neurol Sci. 1994;125:3–10.

    Article  PubMed  CAS  Google Scholar 

  39. Zhao P, Zuo Z. Isoflurane preconditioning induces neuroprotection that is inducible nitric oxide synthase-dependent in neonatal rats. Anesthesiology. 2004;101:695–702.

    Article  PubMed  CAS  Google Scholar 

  40. Zhao P, Peng L, Li L, Xu X, Zuo Z. Isoflurane preconditioning improves long-term neurological outcome after hypoxic-ischemic brain injury in neonatal rats. Anesthesiology. 2007;107:963–70.

    Article  PubMed  CAS  Google Scholar 

  41. Zheng S, Zuo Z. Isoflurane preconditioning reduces Purkinje cell death in an in vitro model of rat cerebellar ischemia. Neuroscience. 2003;118:99–106.

    Article  PubMed  CAS  Google Scholar 

  42. Zheng S, Zuo Z. Isoflurane preconditioning induces neuroprotection against ischemia via activation of p38 mitogen-activated protein kinase. Mol Pharmacol. 2004;65:1172–80.

    Article  PubMed  CAS  Google Scholar 

  43. Zhou Y, Lekic T, Fathali N, Ostrowski RP, Martin RD, Tang J, et al. Isoflurane posttreatment reduces neonatal hypoxic-ischemic brain injury in rats by the sphingosine-1-phosphate/phosphatidylinositol-3-kinase/Akt pathway. Stroke. 2010;41(7):1521–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiping Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Burris, M., Fajilan, A. et al. Prolonged Exposure to Isoflurane Ameliorates Infarction Severity in the Rat Pup Model of Neonatal Hypoxia-Ischemia. Transl. Stroke Res. 2, 382–390 (2011). https://doi.org/10.1007/s12975-011-0081-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-011-0081-5

Keywords

Navigation