Skip to main content

Advertisement

Log in

Neuroprotective Effect of Ghrelin in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Mouse Model of Parkinson’s Disease by Blocking Microglial Activation

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Ghrelin is an endogenous ligand for growth hormone (GH) secretagogue receptor 1a (GHS-R1a) and is produced and released mainly from the stomach. It was recently demonstrated that ghrelin can function as a neuroprotective factor by inhibiting apoptotic pathways. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes nigrostriatal dopaminergic neurotoxicity in rodents; previous studies suggest that activated microglia actively participate in the pathogenesis of Parkinson’s disease (PD) neurodegeneration. However, the role of microglia in the neuroprotective properties of ghrelin is still unknown. Here we show that, in the mouse MPTP PD model generated by an acute regimen of MPTP administration, systemic administration of ghrelin significantly attenuates the loss of substantia nigra pars compacta (SNpc) neurons and the striatal dopaminergic fibers through the activation of GHS-R1a. We also found that ghrelin reduced nitrotyrosine levels and improved the impairment of rota-rod performance. Ghrelin prevents MPTP-induced microglial activation in the SNpc and striatum, the expression of pro-inflammatory molecules tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β), and the activation of inducible nitric oxide synthase. The inhibitory effect of ghrelin on the activation of microglia appears to be indirect by suppressing matrix metalloproteinase-3 (MMP-3) expression in stressed dopaminergic neurons because GHS-R1a is not expressed in SNpc microglial cells. Finally, in vitro administration of ghrelin prevented 1-methyl-4-phenylpyridinium-induced dopaminergic cell loss, MMP-3 expression, microglial activation, and the subsequent release of TNF-α, IL-1β, and nitrite in mesencephalic cultures. Our data indicate that ghrelin may act as a survival factor for dopaminergic neurons by functioning as a microglia-deactivating factor and suggest that ghrelin may be a valuable therapeutic agent for neurodegenerative diseases such as PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Banati RB, Gehrmann J, Schubert P, Kreutzberg GW (1993) Cytotoxicity of microglia. Glia 7:111–118

    Article  PubMed  CAS  Google Scholar 

  • Banks WA, Tschop M, Robinson SM, Heiman ML (2002) Extent and direction of ghrelin transport across the blood–brain barrier is determined by its unique primary structure. J Pharmacol Exp Ther 302:822–827

    Article  PubMed  CAS  Google Scholar 

  • Bessler H, Djaldetti R, Salman H, Bergman M, Djaldetti M (1999) IL-1 beta, IL-2, IL-6 and TNF-alpha production by peripheral blood mononuclear cells from patients with Parkinson’s disease. Biomed Pharmacother 53:141–145

    Article  PubMed  CAS  Google Scholar 

  • Breidert T, Callebert J, Heneka MT, Landreth G, Launay JM, Hirsch EC (2002) Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson’s disease. J Neurochem 82:615–624

    Article  PubMed  CAS  Google Scholar 

  • Chung H, Kim E, Lee DH, Seo S, Ju S, Lee D, Kim H, Park S (2007) Ghrelin inhibits apoptosis in hypothalamic neuronal cells during oxygen–glucose deprivation. Endocrinology 148:148–159

    Article  PubMed  CAS  Google Scholar 

  • Chung H, Seo S, Moon M, Park S (2008) Phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3{beta} and ERK1/2 pathways mediate protective effects of acylated and unacylated ghrelin against oxygen–glucose deprivation-induced apoptosis in primary rat cortical neuronal cells. J Endocrinol 198:511–521

    Google Scholar 

  • Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M (2000) Ghrelin, a novel growth hormone-relasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141:4255–4261

    Article  PubMed  CAS  Google Scholar 

  • Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz JB (2000) Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem 74:2213–2216

    Article  PubMed  CAS  Google Scholar 

  • del Rio-Hortega P (1993) Art and artifice in the science of histology. Histopathology 22:515–525

    Article  PubMed  CAS  Google Scholar 

  • Delgado M, Ganea D (2003) Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson’s disease by blocking microglial activation. FASEB J 17:944–946

    PubMed  CAS  Google Scholar 

  • Dodel RC, Du Y, Bales KR, Ling ZD, Carvey PM, Paul SM (1998) Peptide inhibitors of caspase-3-like proteases attenuate 1-methyl-4-phenylpyridinum-induced toxicity of cultured fetal rat mesencephalic dopamine neurons. Neuroscience 86:701–707

    Article  PubMed  CAS  Google Scholar 

  • Franklin KBJ, Paxinos G (2001) In: Franklin KBJPG (ed) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20:269–287

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Scarano F, Baltuch G (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 22:219–240

    Article  PubMed  CAS  Google Scholar 

  • Hopkins SJ, Rothwell NJ (1995) Cytokines and the nervous system. I: Expression and recognition. Trends Neurosci 18:83–88

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O, Kish SJ (1987) Biochemical pathophysiology of Parkinson’s disease. Adv Neurol 45:19–34

    PubMed  CAS  Google Scholar 

  • Hows ME, Ashmeade TE, Billinton A, Perren MJ, Austin AA, Virley DJ, Organ AJ, Shah AJ (2004a) High-performance liquid chromatography/tandem mass spectrometry assay for the determination of 1-methyl-4-phenyl pyridinium (MPP+) in brain tissue homogenates. J Neurosci Methods 137:221–226

    Article  PubMed  CAS  Google Scholar 

  • Hows ME, Lacroix L, Heidbreder C, Organ AJ, Shah AJ (2004b) High-performance liquid chromatography/tandem mass spectrometric assay for the simultaneous measurement of dopamine, norepinephrine, 5-hydroxytryptamine and cocaine in biological samples. J Neurosci Methods 138:123–132

    Article  PubMed  CAS  Google Scholar 

  • Hunot S, Boissiere F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch EC (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72:355–363

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Betancourt L, Smith RG (2006) Ghrelin amplifies dopamine signaling by cross talk involving formation of growth hormone secretagogue receptor/dopamine receptor subtype 1 heterodimers. Mol Endocrinol 20:1772–1785

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Li LJ, Wang J, Xie JX (2008) Ghrelin antagonizes MPTP-induced neurotoxicity to the dopaminergic neurons in mouse substantia nigra. Exp Neurol 212:532–537

    Article  PubMed  CAS  Google Scholar 

  • Kamegai J, Unterman TG, Frohman LA, Kineman RD (1998) Hypothalamic/pituitary-axis of the spontaneous dwarf rat: autofeedback regulation of growth hormone (GH) includes suppression of GH releasing-hormone receptor messenger ribonucleic acid. Endocrinology 139:3554–3560

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Joh TH (2006) Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 38:333–347

    PubMed  CAS  Google Scholar 

  • Kim YS, Kim SS, Cho JJ, Choi DH, Hwang O, Shin DH, Chun HS, Beal MF, Joh TH (2005) Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia. J Neurosci 25:3701–3711

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Choi DH, Block ML, Lorenzl S, Yang L, Kim YJ, Sugama S, Cho BP, Hwang O, Browne SE, Kim SY, Hong JS, Beal MF, Joh TH (2007) A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J 21:179–187

    Article  PubMed  CAS  Google Scholar 

  • Kindt MV, Heikkila RE, Nicklas WJ (1987) Mitochondrial and metabolic toxicity of 1-methyl-4-(2′-methylphenyl)-1, 2, 3, 6-tetrahydropyridine. J Pharmacol Exp Ther 242:858–863

    PubMed  CAS  Google Scholar 

  • Kojima M, Kangawa K (2005) Ghrelin: structure and function. Physiol Rev 85:495–522

    Article  PubMed  CAS  Google Scholar 

  • Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth hormone-releasing acylated peptide from stomach. Nature 402:656–660

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  • Langston JW (2002) Parkinson’s disease: current and future challenges. Neurotoxicology 23:443–450

    Article  PubMed  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  PubMed  CAS  Google Scholar 

  • Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–1409

    Article  PubMed  CAS  Google Scholar 

  • Liu B (2006) Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson’s disease. AAPS J 8:E606–E621

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Du L, Hong JS (2000) Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J Pharmacol Exp Ther 293:607–617

    PubMed  CAS  Google Scholar 

  • Liu Y, Qin L, Li G, Zhang W, An L, Liu B, Hong JS (2003) Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. J Pharmacol Exp Ther 305:212–218

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Yasojima K, McGeer EG (2001) Inflammation in Parkinson’s disease. Adv Neurol 86:83–89

    PubMed  CAS  Google Scholar 

  • Miao Y, Xia Q, Hou Z, Zheng Y, Pan H, Zhu S (2007) Ghrelin protects cortical neuron against focal ischemia/reperfusion in rats. Biochem Biophys Res Commun 359:795–800

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T (1994) Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 180:147–150

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Cytokines in Parkinson’s disease. J Neural Transm Suppl 58:143–151

    Google Scholar 

  • Nelson EL, Liang CL, Sinton CM, German DC (1996) Midbrain dopaminergic neurons in the mouse: computer-assisted mapping. J Comp Neurol 369:361–371

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22:123–144

    Article  PubMed  CAS  Google Scholar 

  • Pakkenberg B, Moller A, Gundersen HJ, Mouritzen DA, Pakkenberg H (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatr 54:30–33

    Article  PubMed  CAS  Google Scholar 

  • Park S, Sohn S, Kineman RD (2004) Fasting-induced changes in the hypothalamic–pituitary-GH axis in the absence of GH expression: lessons from the spontaneous dwarf rat. J Endocrinol 180:369–378

    Article  PubMed  CAS  Google Scholar 

  • Peino R, Baldelli R, Rodriguez-Garcia J, Rodriguez-Segade S, Kojima M, Kangawa K, Arvat E, Ghigo E, Dieguez C, Casanueva FF (2000) Ghrelin-induced growth hormone secretion in humans. Eur J Endocrinol 143:R11–R14

    Article  PubMed  CAS  Google Scholar 

  • Pennathur S, Jackson-Lewis V, Przedborski S, Heinecke JW (1999) Mass spectrometric quantification of 3-nitrotyrosine, ortho-tyrosine, and o, o′-dityrosine in brain tissue of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-treated mice, a model of oxidative stress in Parkinson’s disease. J Biol Chem 274:34621–34628

    Article  PubMed  CAS  Google Scholar 

  • Przedborski S, Jackson-Lewis V (1998) Mechanisms of MPTP toxicity. Mov Disord 13(Suppl 1):35–38

    PubMed  Google Scholar 

  • Przedborski S, Chen Q, Vila M, Giasson BI, Djaldatti R, Vukosavic S, Souza JM, Jackson-Lewis V, Lee VM, Ischiropoulos H (2001) Oxidative post-translational modifications of alpha-synuclein in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. J Neurochem 76:637–640

    Article  PubMed  CAS  Google Scholar 

  • Schulz JB, Matthews RT, Muqit MM, Browne SE, Beal MF (1995) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J Neurochem 64:936–939

    Article  PubMed  CAS  Google Scholar 

  • Smith RG, Cheng K, Schoen WR, Pong SS, Hickey G, Jacks T, Butler B, Chan WWS, Chaung L-YP, Judith F, Taylor J, Wyvratt MJ, Fisher MH (1993) A nonpeptidyl growth hormone secretagogue. Science 260:1640–1643

    Article  PubMed  CAS  Google Scholar 

  • Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP (2002) Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson’s disease. FASEB J 16:1474–1476

    PubMed  CAS  Google Scholar 

  • Streit WJ, Conde JR, Fendrick SE, Flanary BE, Mariani CL (2005) Role of microglia in the central nervous system’s immune response. Neurol Res 27:685–691

    PubMed  Google Scholar 

  • Tatton NA, Kish SJ (1997) In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 77:1037–1048

    Article  PubMed  CAS  Google Scholar 

  • Teismann P, Schulz JB (2004) Cellular pathology of Parkinson’s disease: astrocytes, microglia and inflammation. Cell Tissue Res 318:149–161

    Article  PubMed  Google Scholar 

  • Teismann P, Tieu K, Cohen O, Choi DK, Wu DC, Marks D, Vila M, Jackson-Lewis V, Przedborski S (2003) Pathogenic role of glial cells in Parkinson’s disease. Mov Disord 18:121–129

    Article  PubMed  Google Scholar 

  • Tipton KF, Singer TP (1993) Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J Neurochem 61:1191–1206

    Article  PubMed  CAS  Google Scholar 

  • Tolwani RJ, Jakowec MW, Petzinger GM, Green S, Waggie K (1999) Experimental models of Parkinson’s disease: insights from many models. Lab Anim Sci 49:363–371

    PubMed  CAS  Google Scholar 

  • Tripanichkul W, Sripanichkulchai K, Duce JA, Finkelstein DI (2007) 17Beta-estradiol reduces nitrotyrosine immunoreactivity and increases SOD1 and SOD2 immunoreactivity in nigral neurons in male mice following MPTP insult. Brain Res 1164:24–31

    Article  PubMed  CAS  Google Scholar 

  • Uhl GR, Javitch JA, Snyder SH (1985) Normal MPTP binding in parkinsonian substantial nigra: evidence for extraneuronal toxin conversion in human brain. Lancet 1:956–957

    Article  PubMed  CAS  Google Scholar 

  • Vila M, Jackson-Lewis V, Guegan C, Wu DC, Teismann P, Choi DK, Tieu K, Przedborski S (2001) The role of glial cells in Parkinson’s disease. Curr Opin Neurol 14:483–489

    Article  PubMed  CAS  Google Scholar 

  • Waseem T, Duxbury M, Ito H, Ashley SW, Robinson MK (2008) Exogenous ghrelin modulates release of pro-inflammatory and anti-inflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways. Surgery 143:334–342

    Article  PubMed  Google Scholar 

  • West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    Article  PubMed  CAS  Google Scholar 

  • Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771

    PubMed  CAS  Google Scholar 

  • Yoo YH, Lim YJ, Park SE, Kim JM, Park YC (2004) Overexpression of redox factor-1 negatively regulates NO synthesis and apoptosis in LPS-stimulated RAW 264.7 macrophages. FEBS Lett 556:39–42

    Article  PubMed  CAS  Google Scholar 

  • Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494:528–548

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Korea Science and Engineering Foundation (KOSEF) grant [No. R13-2002-020-03001-0 (2007) & R01-2005-000-10359-0] and a grant of the Korea Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea (No. A050090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungjoon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, M., Kim, H.G., Hwang, L. et al. Neuroprotective Effect of Ghrelin in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Mouse Model of Parkinson’s Disease by Blocking Microglial Activation. Neurotox Res 15, 332–347 (2009). https://doi.org/10.1007/s12640-009-9037-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9037-x

Keywords

Navigation