Skip to main content
Log in

Asymmetries in Cerebellar Plasticity and Motor Learning

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Synaptic plasticity at the parallel fiber to Purkinje cell synapse has long been considered a cellular correlate for cerebellar motor learning. Functionally, long-term depression and long-term potentiation at these synapses seem to be the reverse of each other, with both pre- and post-synaptic expression occurring in both. However, different cerebellar motor learning paradigms have been shown to be asymmetric and not equally reversible. Here, we discuss the asymmetric reversibility shown in the vestibulo-ocular reflex and eyeblink conditioning and suggest that different cellular plasticity mechanisms might be recruited under different conditions leading to unequal reversibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Marr D. A theory of cerebellar cortex. J Physiol. 1969;202:437–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.

    Article  Google Scholar 

  3. Ito M. Cerebellar control of the vestibulo-ocular reflex—around the flocculus hypothesis. Annu Rev Neurosci. 1982;5:275–96.

    Article  CAS  PubMed  Google Scholar 

  4. Ito M, Kawai N, Udo M, Sato N. Cerebellar-evoked disinhibition in dorsal Deiters neurones. Exp Brain Res. 1968;6:247–64.

    Article  CAS  PubMed  Google Scholar 

  5. De Zeeuw CI, Hansel C, Bian F, Koekkoek SKE, van Alphen AM, Linden DJ, et al. Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron. 1998;20:495–508.

    Article  PubMed  Google Scholar 

  6. Hansel C, De Jeu M, Belmeguenai A, Houtman SH, Buitendijk GHS, Andreev D, et al. alphaCaMKII is essential for cerebellar LTD and motor learning. Neuron. 2006;51:835–43.

    Article  CAS  PubMed  Google Scholar 

  7. Titley HK, Heskin-Sweezie R, Broussard DM. The bidirectionality of motor learning in the vestibulo-ocular reflex is a function of cerebellar mGluR1 receptors. J Neurophysiol. 2010;104:3657–66.

    Article  CAS  PubMed  Google Scholar 

  8. Schonewille M, Gao Z, Boele H-JJ, et al. Reevaluating the role of LTD in cerebellar motor learning. Neuron. 2011;70:43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boyden ES, Raymond JL. Active reversal of motor memories reveals rules governing memory encoding. Neuron. 2003;39:1031–42.

    Article  CAS  PubMed  Google Scholar 

  10. Boyden ES, Katoh A, Raymond JL. Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci. 2004;27:581–609.

    Article  CAS  PubMed  Google Scholar 

  11. Jörntell H, Hansel C. Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron. 2006;52:227–38.

    Article  PubMed  Google Scholar 

  12. Andreescu CE, Milojkovic BA, Haasdijk ED, Kramer P, De Jong FH, Krust A, et al. Estradiol improves cerebellar memory formation by activating estrogen receptor beta. J Neurosci. 2007;27:10832–9.

    Article  CAS  PubMed  Google Scholar 

  13. Coesmans M, Weber JT, De Zeeuw CI, Hansel C. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron. 2004;44:691–700.

    Article  CAS  PubMed  Google Scholar 

  14. Lev-Ram V, Mehta SB, Kleinfeld D, Tsien RY. Reversing cerebellar long-term depression. PNAS. 2003;100:15989–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Piochon C, Kloth AD, Grasselli G, et al. Cerebellar plasticity and motor learning deficits in a copy number variation mouse model of autism. Nat Commun. 2014;5:5586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Broussard DM, Kassardjian CD. Learning in a simple motor system. Learn Mem. 2004;11:127–36.

    Article  PubMed  Google Scholar 

  17. Broussard DM, Titley HK, Antflick J, Hampson DR. Motor learning in the VOR: the cerebellar component. Exp Brain Res. 2011;210:451–63.

    Article  PubMed  Google Scholar 

  18. Robinson DA. Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol. 1976;39:954–69.

    CAS  PubMed  Google Scholar 

  19. Lisberger SG, Miles FA, Optican LM. Frequency-selective adaptation: evidence for channels in the vestibulo-ocular reflex? J Neurosci. 1983;3:1234–44.

    CAS  PubMed  Google Scholar 

  20. Raymond JL, Lisberger SG. Behavioural analysis of signals that guide learned changes in the amplitude and dynamics of the vestibulo-ocular reflex. J Neurosci. 1996;16:7791–802.

    CAS  PubMed  Google Scholar 

  21. Kimpo RR, Boyden ES, Katoh A, Ke MC, Raymond JL. Distinct patterns of stimulus generalizations of increases and decreases in VOR gain. J Neurophysiol. 2005;94:3092–100.

    Article  PubMed  Google Scholar 

  22. Titley HK, Heskin-Sweezie R, Broussard DM. Consolidation and disruption of motor memory generalize across stimulus conditions in the vestibulo-ocular reflex. Brain Res. 2009;1267:37–43.

    Article  CAS  PubMed  Google Scholar 

  23. Miles FA, Eighmy BB. Long-term adaptive changes in primate vestibuloocular reflex. I. Behavioral observations. J Neurophysiol. 1980;43:1406–25.

    CAS  PubMed  Google Scholar 

  24. Freeman JH, Steinmetz AB. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning. Learn Mem. 2011;18:666–77.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Aiba A, Kano M, Chen C, Stanton ME, Fox GD, Herrup K, et al. Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell. 1994;79:377–88.

    Article  CAS  PubMed  Google Scholar 

  26. Kim JJ, Thompson RF. Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends Neurosci. 1997;20:177–81.

    Article  CAS  PubMed  Google Scholar 

  27. Perrett SP, Mauk MD. Extinction of conditioned eyelid responses requires the anterior lobe of cerebellar cortex. J Neurosci. 1995;15:2074–80.

    CAS  PubMed  Google Scholar 

  28. Medina JF, Garcia KS, Mauk MD. A mechanism for savings in the cerebellum. J Neurosci. 2001;21:4081–9.

    CAS  PubMed  Google Scholar 

  29. Wetmore DZ, Jirenhed D-A, Rasmussen A, Johansson F, Schnitzer MJ, Hesslow G. Bidirectional plasticity of Purkinje cells matches temporal features of learning. J Neurosci. 2014;34:1731–7.

  30. Ito M, Sakurai M, Tongroach P. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol. 1982;324:113–34.

  31. Piochon C, Kruskal P, Maclean J, Hansel C. Non-Hebbian spike-timing-dependent plasticity in cerebellar circuits. Front Neural Circuits. 2013;6:124

  32. Thompson RF, Krupa DJ. Organization of memory traces in the mammalian brain. Annu Rev Neurosci. 1994;17:519–49.

    Article  CAS  PubMed  Google Scholar 

  33. Raymond JL, Lisberger SG. Neural learning rules for the vestibulo-ocular reflex. J Neurosci. 1998;18:9112–29.

    CAS  PubMed  Google Scholar 

  34. Piochon C, Levenes C, Ohtsuki G, Hansel C. Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum. J Neurosci. 2010;30:15330–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kase M, Miller DC, Noda H. Discharges of Purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements and fixation. J Physiol. 1980;300:539–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pellerin JP, Lamarre Y. Local field potential oscillations in primate cerebellar cortex during voluntary movement. J Neurophysiol. 1997;78:3502–7.

    CAS  PubMed  Google Scholar 

  37. Wang SS, Denk W, Häusser M. Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci. 2000;3:1266–73.

    Article  CAS  PubMed  Google Scholar 

  38. Finch EA, Augustine GJ. Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature. 1998;396:753–6.

    Article  CAS  PubMed  Google Scholar 

  39. Linden DJ, Connor JA. Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science. 1991;254:1656–9.

  40. Wang YT, Linden DJ. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron. 2000;25:635–47.

    Article  CAS  PubMed  Google Scholar 

  41. Chung HJ, Steinberg JP, Huganir RL, Linden DJ. Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science. 2003;300:1751–5.

  42. Kawaguchi S, Hirano T. Gating of long-term depression by Ca2+/calmodulin-dependent protein kinase II through enhanced cGMP signalling in cerebellar Purkinje cells. J Physiol. 2013;591:1707–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grasselli G, Hansel C. Cerebellar long-term potentiation: cellular mechanisms and role in learning. Int Rev Neurobiol. 2014;117:39–51.

    Article  PubMed  Google Scholar 

  44. Belmeguenai A, Hansel C. A role for protein phosphatases 1, 2A, and 2B in cerebellar long-term potentiation. J Neurosci. 2005;25:10768–72.

    Article  CAS  PubMed  Google Scholar 

  45. Belmeguenai A, Botta P, Weber JT, Carta M, De Ruiter M, De Zeeuw CI, et al. Alcohol impairs long-term depression at the cerebellar parallel fiber-Purkinje cell synapse. J Neurophysiol. 2008;100:3167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. He Q, Titley H, Grasselli G, Piochon C, Hansel C. Ethanol affects NMDA receptor signaling at climbing fiber-Purkinje cell synapses in mice and impairs cerebellar LTD. J Neurophysiol. 2013;109:1333–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lev-Ram V, Wong ST, Storm DR, Tsien RY. A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. PNAS. 2002;99:8389–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang D-J, Su L-D, Wang Y-N, Yang D, Sun C-L, Zhou L, et al. Long-term potentiation at cerebellar parallel fiber-Purkinje cell synapses requires presynaptic and postsynaptic signaling cascades. J Neurosci. 2014;34:2355–64.

    Article  CAS  PubMed  Google Scholar 

  49. Huang Y, Man H-Y, Sekine-Aizawa Y, Han Y, Juluri K, Luo H, et al. S-nitrosylation of N-ethylmaleimide sensitive factor mediates surface expression of AMPA receptors. Neuron. 2005;46:533–40.

    Article  CAS  PubMed  Google Scholar 

  50. Kakegawa W, Yuzaki M. A mechanism underlying AMPA receptor trafficking during cerebellar long-term potentiation. PNAS. 2005;102:17846–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hansel C. When the B-team runs plasticity: GluR2 receptor trafficking in cerebellar long-term potentiation. PNAS. 2005;102:18245–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Salin PA, Malenka RC, Nicoll RA. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron. 1996;16:797–803.

    Article  CAS  PubMed  Google Scholar 

  53. Qiu D, Knöpfel T. Presynaptically expressed long-term depression at cerebellar parallel fiber synapses. Eur J Physiol. 2009;457:865–75.

    Article  CAS  Google Scholar 

  54. Chu C-P, Zhao G-Y, Jin R, Zhao S-N, Sun L, Qiu D-L. Properties of 4 Hz stimulation-induced parallel fiber-Purkinje cell presynaptic long-term plasticity in mouse cerebellar cortex in vivo. Eur J Neurosci. 2014;39:1624–31.

    Article  PubMed  Google Scholar 

  55. Ohyama T, Voicu H, Kalmbach B, Mauk MD. A decrementing form of plasticity apparent in cerebellar learning. J Neurosci. 2010;30:16993–7003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. van Beugen BJ, Nagaraja RY, Hansel C. Climbing fiber-evoked endocannabinoid signaling heterosynaptically suppresses presynaptic cerebellar long-term potentiation. J Neurosci. 2006;26:8289–94.

  57. Rinaldo L, Hansel C. Muscarinic acetylcholine receptor activation blocks long-term potentiation at cerebellar parallel fiber-Purkinje cell synapses via cannabinoid signaling. PNAS. 2013;110:11181–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Belmeguenai A, Hosy E, Bengtsson F, et al. Intrinsic plasticity complements long-term potentiation in parallel fiber input gain control in cerebellar Purkinje cells. J Neurosci. 2010;30:13630–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hansel C, Linden DJ, D’Angelo E. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci. 2001;4:467–75.

    CAS  PubMed  Google Scholar 

  60. Gao Z, van Beugen BJ, De Zeeuw CI. Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci. 2012;13:619–35.

    Article  CAS  PubMed  Google Scholar 

  61. Ohyama T, Nores WL, Medina JF, Riusech FA, Mauk MD. Learning-induced plasticity in deep cerebellar nucleus. J Neurosci. 2006;26:12656–63.

    Article  CAS  PubMed  Google Scholar 

  62. Schonewille M, Belmeguenai A, Koekkoek SKE, et al. Purkinje cell-specific knockout of the protein phosphatase PP2B impairs potentiation and cerebellar motor learning. Neuron. 2010;67:618–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ly R, Bouvier G, Schonewille M, Arabo A, Rondi-Reig L, Léna C, et al. T-type channel blockade impairs long-term potentiation at the parallel fiber-Purkinje cell synapse and cerebellar learning. PNAS. 2013;110:20302–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ke MC, Guo CC, Raymond JL. Elimination of climbing fiber instructive signals during motor learning. Nat Neurosci. 2009;12:1171–9.

    Article  CAS  PubMed  Google Scholar 

  65. Nguyen-Vu TDB, Kimpo RR, Rinaldi JM, Kohli A, Zeng H, Deisseroth K, et al. Cerebellar Purkinje cell activity drives motor learning. Nat Neurosci. 2013;16:1734–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Clopath C, Badura A, De Zeeuw CI, Brunel N. A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice. J Neurosci. 2014;34:7203–15.

    Article  CAS  PubMed  Google Scholar 

  67. Hansel C, Linden DJ. Long-term depression of the cerebellar climbing fiber-Purkinje neuron synapse. Neuron. 2000;26:473–82.

  68. D’Angelo E, Rossi P, Armano S, Taglietti V. Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. J Neurophysiol. 1999;81:277–87.

    PubMed  Google Scholar 

  69. Armano S, Rossi P, Taglietti V, D’Angelo E. Long-term potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of rat cerebellum. J Neurosci. 2000;20:5208–16.

    CAS  PubMed  Google Scholar 

  70. Gall D, Prestori F, Sola E, D’Errico A, Roussel C, Forti L, et al. Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage. J Neurosci. 2005;25:4813–22.

    Article  CAS  PubMed  Google Scholar 

  71. Kano M, Rexhausen U, Dreessen J, Konnerth A. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature. 1992;356:601–4.

    Article  CAS  PubMed  Google Scholar 

  72. Duguid IC, Smart TG. Retrograde activation of presynaptic NMDA receptors enhances GABA release at cerebellar interneuron-Purkinje cell synapses. Nat Neurosci. 2004;7:525–33.

    Article  CAS  PubMed  Google Scholar 

  73. Aizenman CD, Manis PB, Linden DJ. Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron. 1998;21:827–35.

    Article  CAS  PubMed  Google Scholar 

  74. Pugh JR, Raman IM. Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron. 2006;51:113–23.

    Article  CAS  PubMed  Google Scholar 

  75. du Lac S, Raymond JL, Sejnowski TJ, Lisberger SG. Learning and memory in the vestibulo-ocular reflex. Annu Rev Neurosci. 1995;18:409–41.

  76. Prestori F, Bonardi C, Mapelli L, et al. Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage. PLoS ONE. 2013;8:e64828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Boele H-J, Koekkoek SKE, De Zeeuw CI, Ruigrok TJH. Axonal sprouting and formation of terminals in the adult cerebellum during associative motor learning. J Neurosci. 2013;33:17897–907.

    Article  CAS  PubMed  Google Scholar 

  78. Wulff P, Schonewille M, Renzi M, et al. Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nat Neurosci. 2009;12:1042–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Andreescu CE, Prestori F, Brandalise F, et al. NR2A subunit of the N-methyl D-aspartate receptors are required for potentiation at the mossy fiber to granule cell synapse and vestibulo-cerebellar motor learning. Neuroscience. 2011;176:274–83.

    Article  CAS  PubMed  Google Scholar 

  80. Yang Y, Lisberger SG. Role of plasticity at different sites across the time course of cerebellar motor learning. J Neurosci. 2014;34:7077–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Titley HK, Heskin-Sweezie R, Chung JJ, Kassardjian CD, Razik F, Broussard DM. Rapid consolidation of motor memory in the vestibuloocular reflex. J Neurophysiol. 2007;98:3809–12.

    Article  PubMed  Google Scholar 

  82. Kassardjian CD, Tan Y-F, Chung J-YJ, Heskin R, Peterson MJ, Broussard DM. The site of a motor memory shifts with consolidation. J Neurosci. 2005;25:7979–85.

    Article  CAS  PubMed  Google Scholar 

  83. Shutoh F, Ohki M, Kitazawa H, Itohara S, Nagao S. Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience. 2006;139:767–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank D. Broussard and members of the Hansel lab for their many helpful discussions. This work was supported by the National Institute of Neurological Disorders and Stroke (NS062771 to C.H.).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather K. Titley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titley, H.K., Hansel, C. Asymmetries in Cerebellar Plasticity and Motor Learning. Cerebellum 15, 87–92 (2016). https://doi.org/10.1007/s12311-014-0635-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0635-7

Keywords

Navigation