Skip to main content

Advertisement

Log in

Prefrontal Control of Cerebellum-Dependent Associative Motor Learning

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Behavioral studies have demonstrated that both medial prefrontal cortex (mPFC) and cerebellum play critical roles in trace eyeblink conditioning. However, little is known regarding the mechanism by which the two brain regions interact. By use of electrical stimulation of the caudal mPFC as a conditioned stimulus, we show evidence that persistent outputs from the mPFC to cerebellum are necessary and sufficient for the acquisition and expression of a trace conditioned response (CR)-like response. Specifically, the persistent outputs of caudal mPFC are relayed to the cerebellum via the rostral part of lateral pontine nuclei. Moreover, interfering with persistent activity by blockade of the muscarinic Ach receptor in the caudal mPFC impairs the expression of learned trace CRs. These results suggest an important way for the caudal mPFC to interact with the cerebellum during associative motor learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

aCSF:

Artificial cerebrospinal fluid

CS:

Conditioned stimulus

CR:

Conditioned response

IN:

Interpositus nucleus

ISI:

Interstimulus interval

LPN:

Lateral pontine nuclei

mPFC:

Medial prefrontal cortex

mAchR:

Muscarinic Ach receptor

SCOP:

Scopolamine hydrobromide

TEBC:

Trace eyeblink conditioning

US:

Unconditioned stimulus

References

  1. Weiss C, Disterhoft JF. Eyeblink conditioning, motor control, and the analysis of limbic-cerebellar interactions. Behav Brain Sci. 1996;19:479–81.

    Article  Google Scholar 

  2. Shors TJ. Memory traces of trace memories: neurogenesis, synaptogenesis and awareness. Trends Neurosci. 2004;27:250–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Woodruff-Pak DS, Disterhoft JF. Where is the trace in trace conditioning? Trends Neurosci. 2008;31:105–12.

    Article  CAS  PubMed  Google Scholar 

  4. Weiss C, Disterhoft JF. Exploring prefrontal cortical memory mechanisms with eyeblink conditioning. Behav Neurosci. 2011;125:318–26.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Woodruff-Pak DS, Lavond DG, Thompson RF. Trace conditioning: abolished by cerebellar nuclear lesions but not lateral cerebellar cortex aspirations. Brain Res. 1985;348:249–60.

    Article  CAS  PubMed  Google Scholar 

  6. Takehara K, Kawahara S, Kirino Y. Time-dependent reorganization of the brain components underlying memory retention in trace eyeblink conditioning. J Neurosci. 2003;23:9897–905.

    CAS  PubMed  Google Scholar 

  7. Hu B, Yang L, Huang LS, Chen H, Zeng Y, Feng H, et al. Effect of cerebellar reversible inactivations on the acquisition of trace conditioned eyeblink responses in guinea pigs: comparison of short and long trace intervals. Neurosci Lett. 2009;459:41–5.

    Article  CAS  PubMed  Google Scholar 

  8. Pakaprot N, Kim S, Thompson RF. The role of the cerebellar interpositus nucleus in short and long term memory for trace eyeblink conditioning. Behav Neurosci. 2009;123:54–61.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Solomon PR, Vander Schaaf ER, Thompson RF, Weisz DJ. Hippocampus and trace conditioning of the rabbit’s classically conditioned nictitating membrane response. Behav Neurosci. 1986;100:729–44.

    Article  CAS  PubMed  Google Scholar 

  10. Moyer Jr JR, Deyo RA, Disterhoft JF. Hippocampectomy disrupts trace eyeblink conditioning in rabbits. Behav Neurosci. 1990;104:243–52.

    Article  PubMed  Google Scholar 

  11. McGlinchey-Berroth R, Carrillo MC, Gabrieli JD, Brawn CM, Disterhoft JF. Impaired trace eyeblink conditioning in bilateral, medial-temporal lobe amnesia. Behav Neurosci. 1997;111:873–82.

    Article  CAS  PubMed  Google Scholar 

  12. Weiss C, Bouwmeester H, Power JM, Disterhoft JF. Hippocampal lesions prevent trace eyeblink conditioning in the freely moving rat. Behav Brain Res. 1999;99:123–32.

    Article  CAS  PubMed  Google Scholar 

  13. Kronforst-Collins MA, Disterhoft JF. Lesions of the caudal area of rabbit medial prefrontal cortex impair trace eyeblink conditioning. Neurobiol Learn Mem. 1998;69:147–62.

    Article  CAS  PubMed  Google Scholar 

  14. Weible AP, McEchron MD, Disterhoft JF. Cortical involvement in acquisition and extinction of trace eyeblink conditioning. Behav Neurosci. 2000;114:1058–67.

    Article  CAS  PubMed  Google Scholar 

  15. McLaughlin J, Skaggs H, Churchwell J, Powell DA. Medial prefrontal cortex and pavlovian conditioning: trace versus delay conditioning. Behav Neurosci. 2002;116:37–47.

    Article  PubMed  Google Scholar 

  16. Powell DA, Churchwell J, Burriss L. Medial prefrontal lesions and pavlovian eyeblink and heart rate conditioning: effects of partial reinforcement on delay and trace conditioning in rabbits. Behav Neurosci. 2005;119:180–9.

    Article  CAS  PubMed  Google Scholar 

  17. Galvez R, Weible AP, Disterhoft JF. Cortical barrel lesions impair whisker-CS trace eyeblink conditioning. Learn Mem. 2007;14:94–100.

    Article  PubMed  Google Scholar 

  18. Flores LC, Disterhoft JF. Caudate nucleus is critically involved in trace eyeblink conditioning. J Neurosci. 2009;29:14511–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Glickstein M, Doron K. Cerebellum: connections and functions. Cerebellum. 2008;7:589–94.

    Article  PubMed  Google Scholar 

  20. Weible AP, Weiss C, Disterhoft JF. Activity profiles of single neurons in caudal anterior cingulate cortex during trace eyeblink conditioning in the rabbit. J Neurophysiol. 2003;90:599–612.

    Article  PubMed  Google Scholar 

  21. Takehara-Nishiuchi K, McNaughton BL. Spontaneous changes of neocortical code for associative memory during consolidation. Science. 2008;322:960–3.

    Article  CAS  PubMed  Google Scholar 

  22. Darling RD, Tkastsuki K, Griffin AL, Berry SD. Eyeblink conditioning contingent on hippocampal theta enhances hippocampal and medial prefrontal responses. J Neurophysiol. 2011;105:2213–24.

    Article  PubMed  Google Scholar 

  23. Gruart A, Guillazo-Blanch G, Fernández-Mas R, Jiménez-Díaz L, Delgado-García JM. Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats. J Neurophysiol. 2000;84:2680–90.

    CAS  PubMed  Google Scholar 

  24. Green JT, Arenos JD. Hippocampal and cerebellar single-unit activity during delay and trace eyeblink conditioning in the rat. Neurobiol Learn Mem. 2007;87:269–84.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Simon B, Knuckley B, Churchwell J, Powell DA. Post-training lesions of the medial prefrontal cortex interfere with subsequent performance of trace eyeblink conditioning. J Neurosci. 2005;25:10740–6.

    Article  CAS  PubMed  Google Scholar 

  26. Hu B, Chen H, Feng H, Zeng Y, Yang L, Fan ZL, et al. Disrupted topography of the acquired trace-conditioned eyeblink responses in guinea pigs after suppression of cerebellar cortical inhibition to the interpositus nuclei. Brain Res. 2010;1337:41–55.

    Article  CAS  PubMed  Google Scholar 

  27. Kalmbach BE, Ohyama T, Kreider JC, Riusech F, Mauk MD. Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning. Learn Mem. 2009;16:86–95.

    Article  PubMed  Google Scholar 

  28. Siegel JJ, Kalmbach BE, Chitwood RA, Mauk MD. Persistent activity in a cortical-to- subcortical circuit: bridging the temporal gap in trace eyelid conditioning. J Neurophysiol. 2012;107:50–64.

    Article  PubMed  Google Scholar 

  29. Kalmbach BE, Ohyama T, Mauk MD. Temporal patterns of inputs to cerebellum necessary and sufficient for trace eyelid conditioning. J Neurophysiol. 2010;104:627–40.

    Article  PubMed  Google Scholar 

  30. Rapisarda C, Bacchelli B. The brain of the guinea pig in stereotaxic coordinates. Arch Sci Biol. 1977;61:1–37.

    CAS  Google Scholar 

  31. Quirk GJ, Likhtik E, Pelletier JG, Pare D. Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci. 2003;23:8800–7.

    CAS  PubMed  Google Scholar 

  32. Choi J, Moore JW. Cerebellar neuronal activity expresses the complex topography of conditioned eyeblink responses. Behav Neurosci. 2003;117:1211–9.

    Article  PubMed  Google Scholar 

  33. Dudeney JE, Olson KN, Kehoe J. Time-specific extinction and recovery of the rabbit’s (Oryctolagus cuniculus) conditioned nictitating membrane response using mixed interstimulus interval. Behav Neurosci. 2007;121:808–13.

    Article  PubMed  Google Scholar 

  34. Schmahmann JD, Pandya DN. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci. 1997;17:438–58.

    CAS  PubMed  Google Scholar 

  35. Steinmetz JE, Logan CG, Rosen DJ, Thompson JK, Lavond DG, Thompson RF. Initial localization of the acoustic conditioned stimulus projection system to the cerebellum essential for classical eyelid conditioning. Proc Natl Acad Sci U S A. 1987;84:3531–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Leal-Campanario R, Fairen A, Delgado-Garcia JM, Gruart A. Electrical stimulation of the rostral medial prefrontal cortex in rabbits inhibits the expression of conditioned eyelid responses but not their acquisition. Proc Natl Acad Sci U S A. 2007;104:11459–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Leal-Campanario R, Delgado-García JM, Gruart A. The rostral medial prefrontal cortex regulates the expression of conditioned eyelid responses in behaving rabbits. J Neurosci. 2013;33:4378–86.

    Article  CAS  PubMed  Google Scholar 

  38. Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SN, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control–the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11:457–87.

    Article  PubMed  Google Scholar 

  39. Sánchez-Campusano R, Gruart A, Delgado-García JM. Dynamic changes in the cerebellar-interpositus/red-nucleus-motoneuron pathway during motor learning. Cerebellum. 2011;10:702–10.

    Article  PubMed  Google Scholar 

  40. Jimenez-Diaz L, Navarro-Lopez JD, Gruart A, Delgado-Garcia JM. Role of cerebellum interpositus nucleus in the genesis and control of reflex and conditioned eyelid responses. J Neurosci. 2004;24:9138–45.

    Article  CAS  PubMed  Google Scholar 

  41. Sanchez-Campusano R, Gruart A, Delgado-Garcia JM. The cerebellar interpositus nucleus and the dynamic control of learned motor responses. J Neurosci. 2007;27:6620–32.

    Article  CAS  PubMed  Google Scholar 

  42. Wu GY, Yao J, Zhang LQ, Fan ZL, Zhao CD, Li X, et al. Classical eyeblink conditioning using electrical stimulation of caudal mPFC as conditioned stimulus is dependent on cerebellar interpositus nucleus in guinea pigs. Acta Pharmacol Sin. 2012;33:717–27.

    Article  CAS  PubMed  Google Scholar 

  43. Dembrow NC, Chitwood RA, Johnston D. Projection-specific neuromodulation of medial prefrontal cortex neurons. J Neurosci. 2010;30:16922–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Zhou X, Qi XL, Douglas K, Palaninathan K, Kang HS, Buccafusco JJ, et al. Cholinergic modulation of working memory activity in primate prefrontal cortex. J Neurophysiol. 2011;106:2180–8.

    Article  CAS  PubMed  Google Scholar 

  45. Takehara-Nishiuchi K, Kawahara S, Kirino Y. NMDA receptor-dependent processes in the medial prefrontal are important for acquisition and the early stage of consolidation during trace, but not delay eyeblink conditioning. Learn Mem. 2005;12:606–14.

    Article  PubMed  Google Scholar 

  46. Takehara-Nishiuchi K, Nakao K, Kawahara S, Matsuki N, Kirino Y. Systems consolidation requires postlearning activation of NMDA receptors in the medial prefrontal in trace eyeblink conditioning. J Neurosci. 2006;26:5049–58.

    Article  CAS  PubMed  Google Scholar 

  47. Marr D. A theory of cerebellar cortex. J Physiol (London). 1969;202:437.

    CAS  Google Scholar 

  48. Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.

    Article  Google Scholar 

  49. Lepora NF, Porrill J, Yeo CH, Dean P. Sensory prediction or motor control? Application of marr-albus type models of cerebellar function to classical conditioning. Front Comput Neurosci. 2010;4:140.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Boyd J, Aitkin LM. Responses of single units in the pontine nuclei of the cat to acoustic stimulation. Neurosci Lett. 1976;3:259–63.

    Article  CAS  PubMed  Google Scholar 

  51. Aitkin LM, Boyd J. Acoustic input to the lateral pontine nuclei. Hear Res. 1978;1:67–77.

    Article  CAS  PubMed  Google Scholar 

  52. Freeman Jr JH, Muckler AS. Developmental changes in eyeblink conditioning and neuronal activity in the pontine nuclei. Learn Mem. 2003;10:337–45.

    Article  PubMed  Google Scholar 

  53. Kishimoto Y, Kawahara S, Suzuki M, Mori H, Mishina M, Kirino Y. Classical eyeblink conditioning in glutamate receptor subunit δ2 mutant mice is impaired in the delay paradigm but not in the trace paradigm. Eur J Neurosci. 2001;13:1249–53.

    Article  CAS  PubMed  Google Scholar 

  54. Woodruff-Pak DS, Green JT, Levin SI, Meisler MH. Inactivation of sodium channel Scn8A (Nav1.6) in Purkinje neurons impairs learning in Morris water maze and delay but not trace eyeblink classical conditioning. Behav Neurosci. 2006;120:229–40.

    Article  PubMed  Google Scholar 

  55. Gerwig M, Eber AC, Guberina H, Frings M, Kolb FP, Forsting M, et al. Trace eyeblink conditioning in patients with cerebellar degeneration: comparison of short and long trace intervals. Exp Brain Res. 2008;187:85–96.

    Article  CAS  PubMed  Google Scholar 

  56. Brown KL, Agelan A, Woodruff-Pak DS. Unimpaired trace classical eyeblink conditioning in Purkinje cell degeneration (pcd) mutant mice. Neurobiol Learn Mem. 2010;93:303–11.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Cheng DT, Disterhoft JF, Power JM, Ellis DA, Desmond JE. Neural substrate underlying human delay and trace eyeblink conditioning. Proc Natl Acad Sci U S A. 2008;105:8108–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Plakke B, Freeman JH, Poremba A. Metabolic mapping of the rat cerebellum during delay and trace eyeblink conditioning. Neurobiol Learn Mem. 2007;88:11–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Hu B, Chen H, Yang L, Tao ZF, Yan J, Zhang YH, et al. Changes of synaptic ultrastructure in the guinea pig interpositus nuclei associate with response magnitude and timing after trace eyeblink conditioning. Behav Brain Res. 2012;226:529–37.

    Article  PubMed  Google Scholar 

  60. Chen H, Yang L, Chen F, Yan J, Yang N, Wang YJ, et al. Functional inactivation of orexin 1 receptors in the cerebellum disrupts trace eyeblink conditioning and local theta oscillations in guinea pigs. Behav Brain Res. 2013;250:114–22.

    Article  CAS  PubMed  Google Scholar 

  61. Kalmbach BE, Davis T, Ohyama T, Riusech F, Nores WL, Mauk MD. Cerebellar cortex contributions to the expression and timing of conditioned eyelid responses. J Neurophysiol. 2010;103:2039–49.

    Article  PubMed  Google Scholar 

  62. Halverson HE, Freeman JH. Medical auditory thalamic nuclei are necessary for eyeblink conditioning. Behav Neurosci. 2006;120:880–7.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Freeman JH, Halverson HE, Hubbard EM. Inferior colliculus lesions impair eyeblink conditioning in rats. Learn Mem. 2007;14:842–6.

    Article  PubMed  Google Scholar 

  64. Freeman JH, Steinmetz AB. Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning. Learn Mem. 2011;18:666–77.

    Article  PubMed  Google Scholar 

  65. Oakley DA, Russell IS. Neocortical lesions and Pavlovian conditioning. Physiol Behav. 1972;8:915–26.

    Article  CAS  PubMed  Google Scholar 

  66. Mauk MD, Thompson RF. Retention of classically conditioned eyelid responses following acute decerebration. Brain Res. 1987;403:89–95.

    Article  CAS  PubMed  Google Scholar 

  67. Kotani S, Kawahara S, Kirino Y. Classical eyeblink conditioning in decerebrate guinea pigs. Eur J Neurosci. 2002;15:1267–70.

    Article  PubMed  Google Scholar 

  68. Kotani S, Kawahara S, Kirino Y. Trace eyeblink conditioning in decerebrate guinea pigs. Eur J Neurosci. 2003;17:1445–54.

    Article  PubMed  Google Scholar 

  69. Ramnani N. The primate cortical-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was mainly supported by the National Natural Science Foundation of China (NSFC) grants NSFC 31100794 to B. Hu and NSFC 81070875 to J.F. Sui, and was partially supported by the Third Military Medical University’s Youth Project (2010XQN04) to B. Hu.

Conflict of Interest

The authors declare that there are no conflict of interest related to the submission of this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-feng Sui or Bo Hu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 915 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Yang, L., Xu, Y. et al. Prefrontal Control of Cerebellum-Dependent Associative Motor Learning. Cerebellum 13, 64–78 (2014). https://doi.org/10.1007/s12311-013-0517-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0517-4

Keywords

Navigation