Skip to main content

Advertisement

Log in

Steroids, sex and the cerebellar cortex: implications for human disease

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Neurosteroids play an important role in the development of the cerebellum. In particular, estradiol and progesterone appear capable of inducing increases in dendritic spine density during development, and there is evidence that both are synthesized de novo in the cerebellum during critical developmental periods. In normal neonates and adults, there are few differences in the cerebellum between the sexes and most studies indicate that hormone and receptor levels also do not differ significantly during development. However, the sexes do differ significantly in risk of neuropsychological diseases associated with cerebellar pathology, and in animal models there are noticeable sex differences in the response to insult and genetic mutation. In both humans and animals, males tend to fare worse. Boys are more at risk for autism and Attention Deficit Hyperactivity Disorder than girls, and schizophrenia manifests at an earlier age in men. In rats males fare worse than females after perinatal exposure to polychlorinated biphenyls, and male mice heterozygous for the staggerer and reeler mutation show a more severe phenotype. Although very recent evidence suggests that differences in neurosteroid levels between the sexes in diseased animals may play a role in generating different disease phenotypes, the reason this hormonal difference occurs in diseased but not normal animals is currently unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kern JK. The Possible role of the cerebellum in autism/PDD: disruption of a multisensory feedback loop. Med Hypoth. 2002;59:255–60.

    Article  CAS  Google Scholar 

  2. Konarski JK, McIntyre RS, Grupp LA, Kennedy SH. Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? J Psychiatry Neurosci. 2005;30:178–86.

    PubMed  Google Scholar 

  3. Andreasen NC, O’Leary DS, Cizadlo T, Arndt S, Rezai K, Ponto LL, et al. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal–thalamic–cerebellar circuitry. Proc Natl Acad Sci USA. 1996;93(18):9985–90.

    Article  PubMed  CAS  Google Scholar 

  4. Allen G, Courchesne E. Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism. Am J Psychiatry. 2003;160:262–73.

    Article  PubMed  Google Scholar 

  5. Mandolesi L, Leggio MG, Graziano A, Neri P, Petrosini L. Cerebellar contribution to spatial event processing: involvement in procedral and working memory components. Eur J Neurosci. 2001;14:2011–22.

    Article  PubMed  CAS  Google Scholar 

  6. Raz N, Gunning-Dixon F, Head D, Williamson A, Acker JD. Age and sex difference in the cerebellum and the ventral pons: a prospective MR study of healthy adults. Am J Neuroradiol. 2001;22:1161–7.

    PubMed  CAS  Google Scholar 

  7. Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL, Vaituzis AC, Vauss YC, Hamburger SD, Kaysen D, Rapoport JL. Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cerebral Cortex. 1996;6:551–60.

    Article  PubMed  CAS  Google Scholar 

  8. Nopoulos P, Flaum M, O’Leary D, Andreason NC. Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Res. 2000;98:1–13.

    Article  PubMed  CAS  Google Scholar 

  9. Henery CC, Mayhew TM. The cerebrum and cerebellum of the fixed human brain: efficient and unbiased estimates of volumes and cortical surface areas. J Anat. 1989;167:167–80.

    PubMed  CAS  Google Scholar 

  10. Mayhew TM, MacLaren R, Henery CC. Fractionator studies on Purkinje cells in the human cerebellum: numbers in right and left halves of male and female brains. J Anat. 1990;169:63–70.

    PubMed  CAS  Google Scholar 

  11. Suarez I, Bodega G, Rubio M, Fernandez B. Sexual dimorphism in the hamster cerebellum demonstrated by glial fibrillary acidic protein (GFAP) and vimetin immunoreactivity. Glia. 1992;5:10–16.

    Article  PubMed  CAS  Google Scholar 

  12. Nguon K, Ladd B, Baxter MG, Sadjel-Sulkowska EM. Sexual dimorphism in cerebellar structure, function, and response to environmental perturbations. Prog Brain Res. 2005;148:341–51.

    Article  PubMed  CAS  Google Scholar 

  13. Kornack DR, Lu B, Black IB. Sexually dimorphic expression of the NGF receptor gene in the developing rat brain. Brain Res. 1991;542:171–4.

    Article  PubMed  CAS  Google Scholar 

  14. Volkow ND, Wang GL, Fowler JS, Hitzemann R, Pappas N, Paskani K, Wong C. Gender differences in cerebellar metabolism: test-retest reproducibility. Am J Psychiatry. 1997;154:119–21.

    PubMed  CAS  Google Scholar 

  15. Ramirez O, Jiminez E. Sexual dimorphism in rat cerebrum and cerebellum: different patterns of catalytically active creatinine kinase isoenzymes during postnatal development and aging. Int J Dev Neurosci. 2002;20:627–29.

    Article  PubMed  CAS  Google Scholar 

  16. McFayden MP, Kusek G, Bolivar BJ, Flaherty L. Differences among eight inbred strains of mice in motor ability and motor learning on a rotorod. Genes Brain Behav. 2003;2:214–19.

    Article  Google Scholar 

  17. Cao C, Ashton-Miller JA, Schultz AB, Alexander NB. Abilities to turn suddenly while walking: effect of age, gender and available response time. J Gerentol A Biol Sci Med Sci. 1997;52:M88–93.

    CAS  Google Scholar 

  18. McCarthy MM, Konkle AT. When is a sex difference not a sex difference? Front Neuroendocrinol. 2005;26:85–102.

    Article  PubMed  CAS  Google Scholar 

  19. Hallonet ME, Teillet MA, Le Douarin NM. A new approach to the development of the cerebellum provided by the quailchick marker system. Development. 1990;108:19–31.

    PubMed  CAS  Google Scholar 

  20. Altman J, Bayer SA. Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol. 1978;179(1):23–48.

    Article  PubMed  CAS  Google Scholar 

  21. Altman J. Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol. 1972;145:399–463.

    Article  PubMed  CAS  Google Scholar 

  22. Altman J, Bayer SA. Embryonic development of the rat cerebellum. III. Regional differences in the time of origin, migration, and settling of Purkinje cells. J Comp Neurol. 1985;231:42–65.

    Article  PubMed  CAS  Google Scholar 

  23. Uzman LL. The histogenesis of the mouse cerebellum as studied by its tritiated thymidine uptake. J Comp Neurol. 1960;114:137–59.

    Article  PubMed  CAS  Google Scholar 

  24. Altman J, Bayer SA, The cerebellar system in relation to its evolution, structure, and function. 1997 CRC Press, Inc, New York.

    Google Scholar 

  25. Crepel F, Delhaye-Bouchaud N, Dupont JL. Fate of the multiple innervation of cerebellar Purkinje cells by climbing fibers in immature control, x-irradiated and hypothyroid rats. Brain Res. 1981;227:59–71.

    PubMed  CAS  Google Scholar 

  26. Zhang L, Goldman JE. Generation of cerebellar interneurons from dividing progenitors in white matter. Neuron. 1996;16:47–54.

    Article  PubMed  Google Scholar 

  27. Crepel F, Mariani J, Delhaye-Bouchaud N. Evidence for a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum. J Neurobiol. 1976;7:567–78.

    Article  PubMed  CAS  Google Scholar 

  28. Gorski RA, Harlan RE, Jacobson CD, Shryne JE, Southam AM. Evidence for the existence of a sexually dimorphic nucleus in the preoptic area of the rat. J Comp Neurol. 1980;193:529–39.

    Article  PubMed  CAS  Google Scholar 

  29. Larriva-Sahd J. Ultrastructural evidence of a sexual dimorphism in the neuropil of the medial preoptic nucleus of the rat: a quantitative study. Neuroendocrinology. 1991;54:416–9.

    Article  PubMed  CAS  Google Scholar 

  30. Madeira MD, Ferreira-Silva L, Paula-Barbosa MM. Influence of sex and estrus cycle on the sexual dimorphisms of the hypothalamic ventromedial nucleus: stereological evaluation and Golgi study. J Comp Neurol. 2001;432:329–45.

    Article  PubMed  CAS  Google Scholar 

  31. Mong JA, Glaser E, McCarthy MM. Gonadal steroids promote glial differentiation and alter neuronal morphology in the developing hypothalamus in a regionally specific manner. J Neurosci. 1999;19:1464–72.

    PubMed  CAS  Google Scholar 

  32. Moriarty K, Kim KH, Bender JR. Estrogen receptormediated rapid signaling. Endocrinology. 2006 Dec;147(12):5557–63.

    Article  PubMed  CAS  Google Scholar 

  33. Isgor C, Sengelaub DR. Prenatal gonadal steroids affect adult spatial behavior, CA1 and CA3 pyramidal cell morphology in rats. Horm Behav. 1998;34:183–98.

    Article  PubMed  CAS  Google Scholar 

  34. Hilton GD, Nunez JL, McCarthy MM. Sex differences in response to kainic acid and estradiol in the hippocampus of newborn rats. Neuroscience. 2003;116:383–91.

    Article  PubMed  CAS  Google Scholar 

  35. Nunez JL, Alt JJ, McCarthy MM. A new model for prenatal brain damage. I. GABAA receptor activation induces cell death in developing rat hippocampus. Exp Neurol. 2003;181:258–69.

    Article  PubMed  CAS  Google Scholar 

  36. Amateau SK, Alt JJ, Stamps CL, McCarthy MM. Brain estradiol content in newborn rats: sex differences, regional heterogeneity, and possible de novo synthesis by the female telencephalon. Endocrinology. 2004;145:2906–17.

    Article  PubMed  CAS  Google Scholar 

  37. Perez SE, Chen EY, Mufson EJ. Distribution of estrogen receptor alpha and beta immunoreactive profiles in the postnatal rat brain. Brain Res Dev Brain Res. 2003;145:117–39.

    Article  PubMed  CAS  Google Scholar 

  38. Ikeda Y, Nagai A. Differential expression of the estrogen receptors alpha and beta during postnatal development of the rat cerebellum. Brain Res. 2006;1083:39–49.

    Article  PubMed  CAS  Google Scholar 

  39. Jakab RL, Wong JK, Belcher SM. Estrogen receptor beta immunoreactivity in differentiating cells of the developing rat cerebellum. J Comp Neurol. 2001;430:396–409.

    Article  PubMed  CAS  Google Scholar 

  40. Price RH Jr, Handa RJ. Expression of estrogen receptor-beta protein and mRNA in the cerebellum of the rat. Neurosci Lett. 2000;288:115–8.

    Article  PubMed  CAS  Google Scholar 

  41. Lavaque E, Mayen A, Azcoitia I, Tena-Sempere M, Garcia-Segura LM. Sex differences, developmental changes, response to injury and cAMP regulation of the mRNA levels of steroidogenic acute regulatory protein, cytochrome p450scc, and aromatase in the olivocerebellar system. J Neurobiol. 2006;66:308–18.

    Article  PubMed  CAS  Google Scholar 

  42. Sakamoto H, Mezaki Y, Shikimi H, Ukena K, Tsutsui K. Dendritic growth and spine formation in response to estrogen in the developing Purkinje cell. Endocrinology. 2003;144:4466–77.

    Article  PubMed  CAS  Google Scholar 

  43. Amateau SK, McCarthy MM. A novel mechanism of dendritic spine plasticity involving estradiol induction of prostaglandin-E2. J Neurosci. 2002;22:8586–96.

    PubMed  CAS  Google Scholar 

  44. Todd BJ, Schwarz JM, McCarthy MM. Prostaglandin-E2: a point of divergence in estradiol-mediated sexual differentiation. Horm Behav. 2005;48:512–21.

    Article  PubMed  CAS  Google Scholar 

  45. Ukena K, Kohchi C, Tsutsui K. Expression and activity of 3beta-hydroxysteroid dehydrogenase/delta5-delta4-isomerase in the rat Purkinje neuron during neonatal life. Endocrinology. 1999;140:805–13.

    Article  PubMed  CAS  Google Scholar 

  46. Sakamoto H, Ukena K, Tsutsui K. Effects of progesterone synthesized de novo in the developing Purkinje cell on its dendritic growth and synaptogenesis. J Neurosci. 2001;21:6221–32.

    PubMed  CAS  Google Scholar 

  47. Ahlbom E, Prins GS, Ceccatelli S. Testosterone protects cerebellar granule cells from oxidative stress-induced cell death through a receptor mediated mechanism. Brain Res. 2001;892:255–62.

    Article  PubMed  CAS  Google Scholar 

  48. Keller EA, Zamparini A, Borodinsky LN, Gravielle MC, Fiszman ML. Role of allopregnanolone on cerebellar granule cells neurogenesis. Brain Res Dev Brain Res. 2004;153:13–7.

    Article  PubMed  CAS  Google Scholar 

  49. McCarthy MM, Auger AP, Perrot-Sinal TS. Getting excited about GABA and sex differences in the brain. Trends Neurosci. 2002;25:307–12.

    Article  PubMed  CAS  Google Scholar 

  50. Eilers J, Plant TD, Marandi N, Konnerth A. GABA-mediated Ca2+ signalling in developing rat cerebellar Purkinje neurones. J Physiol. 2001;536(Pt 2):429–37.

    Article  PubMed  CAS  Google Scholar 

  51. Chavas J, Marty A. Coexistence of excitatory and inhibitory GABA synapses in the cerebellar interneuron network. J Neurosci. 2003;23:2019–31.

    PubMed  CAS  Google Scholar 

  52. Obata K. Excitatory and trophic action of GABA and related substances in newborn mice and organotypic cerebellar culture. Dev Neurosci. 1997;19:117–9.

    Article  PubMed  CAS  Google Scholar 

  53. Nunez JL, Bambrick LL, Krueger BK, McCarthy MM. Prolongation and enhancement of gamma-aminobutyric acid receptor mediated excitation by chronic treatment with estradiol in developing rat hippocampal neurons. Eur J Neurosci. 2005;21:3251–61.

    Article  PubMed  Google Scholar 

  54. Perrot-Sinal TS, Davis AM, Gregerson KA, Kao JP, McCarthy MM. Estradiol enhances excitatory gammaaminobutyric [corrected] acid-mediated calcium signaling in neonatal hypothalamic neurons. Endocrinology. 2001;142:2238–43.

    Article  PubMed  CAS  Google Scholar 

  55. Andreasen NC, Black , DW. Introductory textbook of psychiatry. 3rd ed, Washington, DC: American Psychiatric Publishing, Inc, 2001.

    Google Scholar 

  56. Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, Maravilla KR, Giedd JN, Munson J, Dawson G, Dager SR. Brain structural abnormalities in young children with autism spectrum disorder. Neurology. 2002;59:184–92.

    PubMed  CAS  Google Scholar 

  57. Murakami JW, Courchesne E, Press GA, Yeung-Courchesne R, Hesselink JR. Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Arch Neurol. 1989;46:689–94.

    PubMed  CAS  Google Scholar 

  58. Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med. 1988;318:1349–54.

    PubMed  CAS  Google Scholar 

  59. Levitt JG, Blanton R, Capetillo-Cunliffe L, Guthrie D, Toga A, McCracken JT. Cerebellar vermis lobules VIII-X in autism. Prog Neuropsychopharmacol Biol Psychiatry. 1999;23:625–33.

    Article  PubMed  CAS  Google Scholar 

  60. Courchesne E. Neuroanatomic imaging in autism. Pediatrics. 1991;87(5 Pt 2):781–90.

    PubMed  CAS  Google Scholar 

  61. Heh CW, Smith R, Wu J, Hazlett E, Russell A, Asarnow R, Tanguay P, Buchsbaum MS. Positron emission tomography of the cerebellum in autism. Am J Psychiatry. 1989;146:242–5.

    PubMed  CAS  Google Scholar 

  62. Allen G, Courchesne E. Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism. Am J Psychiatry. 2003;160:262–73.

    Article  PubMed  Google Scholar 

  63. Schneider M, Retz W, Coogan A, Thome J, Rosler M. Anatomical and functional brain imaging in adult attentiondeficit/ hyperactivity disorder (ADHD)-a neurological view. Eur Arch Psychiatry Clin Neurosci. 2006;256 (Suppl. 1):i32–i41.

    Article  PubMed  Google Scholar 

  64. Kim BN, Lee JS, Shin MS, Cho SC, Lee DS. Regional cerebral perfusion abnormalities in attention deficit/hyperactivity disorder. Statistical parametric mapping analysis. Eur Arch Psychiatry Clin Neurosci. 2002;252:219–25.

    Article  PubMed  Google Scholar 

  65. Asarnow JR, Tompson MC, McGrath EP. Annotation: childhood-onset schizophrenia: clinical and treatment issues. J Child Psychol Psychiatry. 2004;4:180–94.

    Article  Google Scholar 

  66. Okugawa G, Sedvall G, Nordstrom M, Andreasen N, Pierson R, Magnotta V, Agartz I. Selective reduction of the posterior superior vermis in men with chronic schizophrenia. Schizophr Res. 2002;55:61–7.

    Article  PubMed  Google Scholar 

  67. Keller A, Castellanos FX, Vaituzis AC, Jeffries NO, Giedd JN, Rapoport JL. Progressive loss of cerebellar volume in childhood-onset schizophrenia. Am J Psychiatry. 2003;160:128–33.

    Article  PubMed  Google Scholar 

  68. Riehemann S, Volz HP, Stutzer P, Smesny S, Gaser C, Sauer H. Hypofrontality in neuroleptic-naive schizophrenic patients during the Wisconsin Card Sorting Test – a fMRI study. Eur Arch Psychiatry Clin Neurosci. 2001;251:66–71.

    Article  PubMed  CAS  Google Scholar 

  69. Dempster EL, Mill J, Craig IW, Collier DA. The quantification of COMT mRNA in post mortem cerebellum tissue: diagnosis, genotype, methylation and expression. BMC Med Genet. 2006;7:10.

    Article  PubMed  CAS  Google Scholar 

  70. Handoko HY, Nyholt DR, Hayward NK, Nertney DA, Hannah DE, Windus LC, McCormack CM, Smith HJ, Filippich C, James MR, Mowry BJ. Separate and interacting effects within the catechol-O-methyltransferase (COMT) are associated with schizophrenia. Mol Psychiatry. 2005;10:589–97.

    Article  PubMed  CAS  Google Scholar 

  71. Bench CJ, Friston KJ, Brown RG, Scott LC, Frackowiak RS, Dolan RJ. The anatomy of melancholia – focal abnormalities of cerebral blood flow in major depression. Psychol Med. 1992;22:607–15.

    Article  PubMed  CAS  Google Scholar 

  72. Davies J, Lloyd KR, Jones IK, Barnes A, Pilowsky LS. Changes in regional cerebral blood flow with venlafaxine in the treatment of major depression. Am J Psychiatry. 2003;160:374–6.

    Article  PubMed  Google Scholar 

  73. Loeber RT, Sherwood AR, Renshaw PF, Cohen BM, Yurgelun-Todd DA. Differences in cerebellar blood volume in schizophrenia and bipolar disorder. Schizophr Res. 1999;37:81–9.

    Article  PubMed  CAS  Google Scholar 

  74. Markowski VP, Cox C, Weiss B. Prenatal cocaine exposure produces gender-specific motor effects in aged rats. Neurotoxicol Teratol. 1998;20:43–53.

    Article  PubMed  CAS  Google Scholar 

  75. Johnson WT, Prohaska JR. Gender influences the effect of perinatal copper deficiency on cerebellar PKC gamma content. Biofactors. 2000;11:163–9.

    PubMed  CAS  Google Scholar 

  76. Hadj-Sahraoui N, Frederic F, Delhaye-Bouchaud N, Mariani J. Gender effect on Purkinje cell loss in the cerebellum of the heterozygous reeler mouse. J Neurogenet. 1996;11:45–58.

    Article  PubMed  CAS  Google Scholar 

  77. Biamonte F, Assenza G, Marino R, Caruso D, Crotti S, Melcangi RC, Cesa R, Strata P, Keller F, Interaction between estrogens and reelin in Purkinje cell development. Program # 322.18/C5 2006 Neuroscience Meeting Planner. Atlanta, GA: Society for Neuroscience, 2006. Online.

    Google Scholar 

  78. Doulazmi M, Frederic F, Lemaigre-Dubreuil Y, Hadj-Sahraoui N, Delhaye-Bouchaud N, Mariani J. Cerebellar Purkinje cell loss during life span of the heterozygous staggerer mouse (Rora(+)/Rora(sg)) is gender-related. J Comp Neurol. 1999;411:267–73.

    Article  PubMed  CAS  Google Scholar 

  79. Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR. Glutamic acid decarboxylase 65 and 67 kDA proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry. 2002;52:805–10.

    Article  PubMed  CAS  Google Scholar 

  80. Hirst WD, Young KA, Newton R, Allport VC, Marriott DR, Wilkin GP. Expression of COX-2 by normal and reactive astrocytes in the adult rat central nervous system. Mol Cell Neurosci. 1999;13:57–68.

    Article  PubMed  CAS  Google Scholar 

  81. Libbey JE, Sweeten TL, McMahon WM, Fujinami RS. Autistic disorder and viral infections. J Neurovirol. 2005;11:1–10.

    Article  PubMed  Google Scholar 

  82. Henderson RG, Brown AE, Tobet SA. Sex differences in cell migration in the preoptic area/anterior hypothalamus of mice. J Neurobiol. 1999 Nov 5;41(2):252–66.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret M. McCarthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dean, S.L., McCarthy, M.M. Steroids, sex and the cerebellar cortex: implications for human disease. Cerebellum 7, 38–47 (2008). https://doi.org/10.1007/s12311-008-0003-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0003-6

Key words

Navigation