Skip to main content
Log in

Neurological S1P signaling as an emerging mechanism of action of oral FTY720 (Fingolimod) in multiple sclerosis

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

FTY720 (fingolimod, Novartis) is a promising investigational drug for relapsing forms of multiple sclerosis (MS), an autoimmune and neurodegenerative disorder of the central nervous system. It is currently under FDA review in the United States, and could represent the first approved oral treatment for MS. Extensive, ongoing clinical trials in Phase II/III have supported both the efficacy and safety of FTY720. FTY720 itself is not bioactive, but when phosphorylated (FTY720-P) by sphingosine kinase 2, it becomes active through modulation of 4 of the 5 known G protein-coupled sphingosine 1-phosphate (S1P) receptors. The mechanism of action (MOA) is thought to be immunological, where FTY720 alters lymphocyte trafficking via S1P1. However, MOA for FTY720 in MS may also involve a direct, neurological action within the central nervous system in view of documented S1P receptor-mediated signaling influences in the brain, and this review considers observations that support an emerging neurological MOA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albert, R., Hinterding, K., Brinkmann, V., Guerini, D., Muller-Hartwieg, C., Knecht, H., Simeon, C., Streiff, M., Wagner, T., Welzenbach, K., Zecri, F., Zollinger, M., Cooke, N., and Francotte, E., Novel immunomodulator FTY720 is phosphorylated in rats and humans to form a single stereoisomer. Identification, chemical proof, and biological characterization of the biologically active species and its enantiomer. J. Med. Chem., 48, 5373–5377 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Allende, M. L., Sasaki, T., Kawai, H., Olivera, A., Mi, Y., Van Echten-Deckert, G., Hajdu, R., Rosenbach, M., Keohane, C. A., Mandala, S., Spiegel, S., and Proia, R. L., Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J. Biol. Chem., 279, 52487–52492 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Balatoni, B., Storch, M. K., Swoboda, E. M., Schonborn, V., Koziel, A., Lambrou, G. N., Hiestand, P. C., Weissert, R., and Foster, C. A., FTY720 sustains and restores neuronal function in the DA rat model of MOG-induced experimental autoimmune encephalomyelitis. Brain Res. Bull., 74, 307–316 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Bashir, K. and Whitaker, J. N., Handbook of Multiple Sclerosis. Lippinocott Williams and Wilkins, Philadelphia, (2002).

    Google Scholar 

  • Brinkmann, V., Pinschewer, D. D., Feng, L., and Chen, S., FTY720: altered lymphocyte traffic results in allograft protection. Transplantation, 72, 764–769 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann, V., Davis, M. D., Heise, C. E., Albert, R., Cottens, S., Hof, R., Bruns, C., Prieschl, E., Baumruker, T., Hiestand, P., Foster, C. A., Zollinger, M., and Lynch, K. R., The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem., 277, 21453–21457 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann, V., Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol. Ther., 115, 84–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann, V., FTY720 (fingolimod) in Multiple Sclerosis: therapeutic effects in the immune and the central nervous system. Br. J. Pharmacol., 158, 1173–1182 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Chabas, D., Baranzini, S. E., Mitchell, D., Bernard, C. C., Rittling, S. R., Denhardt, D. T., Sobel, R. A., Lock, C., Karpuj, M., Pedotti, R., Heller, R., Oksenberg, J. R., and Steinman, L., The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science, 294, 1731–1735 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Chiba, K., Hoshino, Y., Suzuki, C., Masubuchi, Y., Yanagawa, Y., Ohtsuki, M., Sasaki, S., and Fujita, T., FTY720, a novel immunosuppressant possessing unique mechanisms. I. Prolongation of skin allograft survival and synergistic effect in combination with cyclosporine in rats. Transplant. Proc., 28, 1056–1059 (1996).

    CAS  PubMed  Google Scholar 

  • Choi, J. W., Herr, D. R., Lee, C.-W., Teo, S., Kennedy, G., and Chun, J., S1P1 receptor signalling on cells of astrocytic lineages in experimental autoimmune encephalomyelitis: a role in disease progression and the efficacy of fingolimod (FTY720). World Congress on Treatment and Research in Multiple Sclerosis (ECTRIMS), Montreal, Canada, (2008a).

  • Choi, J. W., Lee, C. W., and Chun, J., Biological roles of lysophospholipid receptors revealed by genetic null mice: an update. Biochim. Biophys. Acta, 1781, 531–539 (2008b).

    CAS  PubMed  Google Scholar 

  • Chun, J., Goetzl, E. J., Hla, T., Igarashi, Y., Lynch, K. R., Moolenaar, W., Pyne, S., and Tigyi, G., International Union of Pharmacology. XXXIV. Lysophospholipid receptor nomenclature. Pharmacol. Rev., 54, 265–269 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Chun, J. and Hartung, H. P., Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol., 33, 91–101 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Coelho, R. P., Payne, S. G., Bittman, R., Spiegel, S., and Sato-Bigbee, C., The immunomodulator FTY720 has a direct cytoprotective effect in oligodendrocyte progenitors. J. Pharmacol. Exp. Ther., 323, 626–635 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Cohen, J. A., Barkhof, F., Comi, G., Hartung, H. P., Khatri, B. O., Montalban, X., Pelletier, J., Capra, R., Gallo, P., Izquierdo, G., Tiel-Wilck, K., De Vera, A., Jin, J., Stites, T., Wu, S., Aradhye, S., and Kappos, L., Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med., 362, 402–415 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Dev, K. K., Mullershausen, F., Mattes, H., Kuhn, R. R., Bilbe, G., Hoyer, D., and Mir, A., Brain sphingosine-1-phosphate receptors: implication for FTY720 in the treatment of multiple sclerosis. Pharmacol. Ther., 117, 77–93 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Edsall, L. C., Pirianov, G. G., and Spiegel, S., Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation. J. Neurosci., 17, 6952–6960 (1997).

    CAS  PubMed  Google Scholar 

  • Filippini, G., Munari, L., Incorvaia, B., Ebers, G. C., Polman, C., D’amico, R., and Rice, G. P., Interferons in relapsing remitting multiple sclerosis: a systematic review. Lancet, 361, 545–552 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Foster, C. A., Howard, L. M., Schweitzer, A., Persohn, E., Hiestand, P. C., Balatoni, B., Reuschel, R., Beerli, C., Schwartz, M., and Billich, A., Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. J. Pharmacol. Exp. Ther., 323, 469–475 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Frohman, E. M., Racke, M. K., and Raine, C. S., Multiple sclerosis—the plaque and its pathogenesis. N. Engl. J. Med., 354, 942–955 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Fujino, M., Funeshima, N., Kitazawa, Y., Kimura, H., Amemiya, H., Suzuki, S., and Li, X. K., Amelioration of experimental autoimmune encephalomyelitis in Lewis rats by FTY720 treatment. J. Pharmacol. Exp. Ther., 305, 70–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Gardell, S. E., Choi, J. W., Herr, D. R., Anliker, B., Lu, M., Kennedy, G., and Chun, J., Evidence for neural S1P receptor signaling in EAE and FTY720 efficacy. ECTRIMS, Poster 243 (2007).

    Google Scholar 

  • Gold, R., Linington, C., and Lassmann, H., Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain, 129, 1953–1971 (2006).

    Article  PubMed  Google Scholar 

  • Graeler, M. and Goetzl, E. J., Activation-regulated expression and chemotactic function of sphingosine 1-phosphate receptors in mouse splenic T cells. FASEB J., 16, 1874–1878 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Graler, M. H. and Goetzl, E. J., The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors. FASEB J., 18, 551–553 (2004).

    CAS  PubMed  Google Scholar 

  • Han, M. H., Hwang, S. I., Roy, D. B., Lundgren, D. H., Price, J. V., Ousman, S. S., Fernald, G. H., Gerlitz, B., Robinson, W. H., Baranzini, S. E., Grinnell, B. W., Raine, C. S., Sobel, R. A., Han, D. K., and Steinman, L., Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature, 451, 1076–1081 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Herr, D. R. and Chun, J., Effects of LPA and S1P on the nervous system and implications for their involvement in disease. Curr. Drug Targets, 8, 155–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Hla, T., Physiological and pathological actions of sphingosine 1-phosphate. Semin. Cell Dev. Biol., 15, 513–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Im, D. S., Linking Chinese medicine and G-protein-coupled receptors. Trends Pharmacol. Sci., 24, 2–4 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Ishii, I., Fukushima, N., Ye, X., and Chun, J., Lysophospholipid receptors: signaling and biology. Annu. Rev. Biochem., 73, 321–354 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Jaillard, C., Harrison, S., Stankoff, B., Aigrot, M. S., Calver, A. R., Duddy, G., Walsh, F. S., Pangalos, M. N., Arimura, N., Kaibuchi, K., Zalc, B., and Lubetzki, C., Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. J. Neurosci., 25, 1459–1469 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Jung, C. G., Kim, H. J., Miron, V. E., Cook, S., Kennedy, T. E., Foster, C. A., Antel, J. P., and Soliven, B., Functional consequences of S1P receptor modulation in rat oligodendroglial lineage cells. Glia, 55, 1656–1667 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Kappos, L., Antel, J., Comi, G., Montalban, X., O’connor, P., Polman, C. H., Haas, T., Korn, A. A., Karlsson, G., and Radue, E. W., Oral fingolimod (FTY720) for relapsing multiple sclerosis. N. Engl. J. Med., 355, 1124–1140 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Kappos, L., Radue, E. W., O’connor, P., Polman, C., Hohlfeld, R., Calabresi, P., Selmaj, K., Agoropoulou, C., Leyk, M., Zhang-Auberson, L., and Burtin, P., A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med., 362, 387–401 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Kataoka, H., Sugahara, K., Shimano, K., Teshima, K., Koyama, M., Fukunari, A., and Chiba, K., FTY720, sphingosine 1-phosphate receptor modulator, ameliorates experimental autoimmune encephalomyelitis by inhibition of T cell infiltration. Cell. Mol. Immunol., 2, 439–448 (2005).

    CAS  PubMed  Google Scholar 

  • Kimura, A., Ohmori, T., Ohkawa, R., Madoiwa, S., Mimuro, J., Murakami, T., Kobayashi, E., Hoshino, Y., Yatomi, Y., and Sakata, Y., Essential roles of sphingosine 1-phosphate/S1P1 receptor axis in the migration of neural stem cells toward a site of spinal cord injury. Stem Cells, 25, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Liao, J. J., Huang, M. C., Fast, K., Gundling, K., Yadav, M., Van Brocklyn, J. R., Wabl, M. R., and Goetzl, E. J., Immunosuppressive human anti-lymphocyte autoantibodies specific for the type 1 sphingosine 1-phosphate receptor. FASEB J., 23, 1786–1796 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Chakravarty, D., Maceyka, M., Milstien, S., and Spiegel, S., Sphingosine kinases: a novel family of lipid kinases. Prog. Nucleic Acid Res. Mol. Biol., 71, 493–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lock, C., Hermans, G., Pedotti, R., Brendolan, A., Schadt, E., Garren, H., Langer-Gould, A., Strober, S., Cannella, B., Allard, J., Klonowski, P., Austin, A., Lad, N., Kaminski, N., Galli, S. J., Oksenberg, J. R., Raine, C. S., Heller, R., and Steinman, L., Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med., 8, 500–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Luo, J., Ho, P. P., Buckwalter, M. S., Hsu, T., Lee, L. Y., Zhang, H., Kim, D. K., Kim, S. J., Gambhir, S. S., Steinman, L., and Wyss-Coray, T., Glia-dependent TGF-beta signaling, acting independently of the TH17 pathway, is critical for initiation of murine autoimmune encephalomyelitis. J. Clin. Invest., 117, 3306–3315 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Mandala, S., Hajdu, R., Bergstrom, J., Quackenbush, E., Xie, J., Milligan, J., Thornton, R., Shei, G. J., Card, D., Keohane, C., Rosenbach, M., Hale, J., Lynch, C. L., Rupprecht, K., Parsons, W., and Rosen, H., Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science, 296, 346–349 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Matloubian, M., Lo, C. G., Cinamon, G., Lesneski, M. J., Xu, Y., Brinkmann, V., Allende, M. L., Proia, R. L., and Cyster, J. G., Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature, 427, 355–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Matsuura, M., Imayoshi, T., Chiba, K., and Okumoto, T., Effect of FTY720, a novel immunosuppressant, on adjuvant-induced arthritis in rats. Inflamm. Res., 49, 404–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Meno-Tetang, G. M., Li, H., Mis, S., Pyszczynski, N., Heining, P., Lowe, P., and Jusko, W. J., Physiologically based pharmacokinetic modeling of FTY720 (2-amino-2[2-(-4-octylphenyl)ethyl]propane-1,3-diol hydrochloride) in rats after oral and intravenous doses. Drug Metab. Dispos., 34, 1480–1487 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Miller, R. H. and Mi, S., Dissecting demyelination. Nat. Neurosci., 10, 1351–1354 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Miron, V. E., Hall, J. A., Kennedy, T. E., Soliven, B., and Antel, J. P., Cyclical and dose-dependent responses of adult human mature oligodendrocytes to fingolimod. Am. J. Pathol., 173, 1143–1152 (2008a).

    Article  CAS  PubMed  Google Scholar 

  • Miron, V. E., Jung, C. G., Kim, H. J., Kennedy, T. E., Soliven, B., and Antel, J. P., FTY720 modulates human oligodendrocyte progenitor process extension and survival. Ann. Neurol., 63, 61–71 (2008b).

    Article  CAS  PubMed  Google Scholar 

  • Miron, V. E., Schubart, A., and Antel, J. P., Central nervous system-directed effects of FTY720 (fingolimod). J. Neurol. Sci., 274, 13–17 (2008c).

    Article  CAS  PubMed  Google Scholar 

  • Miron, V. E., Ludwin, S. K., Darlington, P. J., Jarjour, A. A., Soliven, B., Kennedy, T. E., and Antel, J. P., Fingolimod (FTY720) enhances remyelination following demyelination of organotypic cerebellar slices. Am. J. Pathol., 176, 2682–2694 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Mizugishi, K., Yamashita, T., Olivera, A., Miller, G. F., Spiegel, S., and Proia, R. L., Essential role for sphingosine kinases in neural and vascular development. Mol. Cell. Biol., 25, 11113–11121 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Mullershausen, F., Craveiro, L. M., Shin, Y., Cortes-Cros, M., Bassilana, F., Osinde, M., Wishart, W. L., Guerini, D., Thallmair, M., Schwab, M. E., Sivasankaran, R., Seuwen, K., and Dev, K. K., Phosphorylated FTY720 promotes astrocyte migration through sphingosine-1-phosphate receptors. J. Neurochem., 102, 1151–1161 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Nair, A., Frederick, T. J., and Miller, S. D., Astrocytes in multiple sclerosis: A product of their environment. Cell. Mol. Life Sci., 65, 2702–2720 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Nayak, D., Huo, Y., Kwang, W. X., Pushparaj, P. N., Kumar, S. D., Ling, E. A., and Dheen, S. T., Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience, 166, 132–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Novgorodov, A. S., El-Alwani, M., Bielawski, J., Obeid, L. M., and Gudz, T. I., Activation of sphingosine-1-phosphate receptor S1P5 inhibits oligodendrocyte progenitor migration. FASEB J., 21, 1503–1514 (2007).

    Article  CAS  PubMed  Google Scholar 

  • O’connor, P., Comi, G., Montalban, X., Antel, J., Radue, E. W., De Vera, A., Pohlmann, H., and Kappos, L., Oral fingolimod (FTY720) in multiple sclerosis: two-year results of a phase II extension study. Neurology, 72, 73–79 (2009).

    Article  PubMed  Google Scholar 

  • Oo, M. L., Thangada, S., Wu, M. T., Liu, C. H., Macdonald, T. L., Lynch, K. R., Lin, C. Y., and Hla, T., Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J. Biol. Chem., 282, 9082–9089 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Osinde, M., Mullershausen, F., and Dev, K. K., Phosphorylated FTY720 stimulates ERK phosphorylation in astrocytes via S1P receptors. Neuropharmacology, 52, 1210–1218 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos, D., Rundle, J., Patel, R., Marshall, I., Stretton, J., Eaton, R., Richardson, J. C., Gonzalez, M. I., Philpott, K. L., and Reynolds, R., FTY720 ameliorates MOG-induced experimental autoimmune encephalomyelitis by suppressing both cellular and humoral immune responses. J. Neurosci. Res., 88, 346–359 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Pappu, R., Schwab, S. R., Cornelissen, I., Pereira, J. P., Regard, J. B., Xu, Y., Camerer, E., Zheng, Y. W., Huang, Y., Cyster, J. G., and Coughlin, S. R., Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science, 316, 295–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Rammohan, K. W. and Shoemaker, J., Emerging multiple sclerosis oral therapies. Neurology, 74Suppl 1, S47–S53 (2010).

    Article  PubMed  Google Scholar 

  • Rao, T. S., Lariosa-Willingham, K. D., Lin, F. F., Palfreyman, E. L., Yu, N., Chun, J., and Webb, M., Pharmacological characterization of lysophospholipid receptor signal transduction pathways in rat cerebrocortical astrocytes. Brain Res., 990, 182–194 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Schwab, S. R. and Cyster, J. G., Finding a way out: lymphocyte egress from lymphoid organs. Nat. Immunol., 8, 1295–1301 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Sorensen, S. D., Nicole, O., Peavy, R. D., Montoya, L. M., Lee, C. J., Murphy, T. J., Traynelis, S. F., and Hepler, J. R., Common signaling pathways link activation of murine PAR-1, LPA, and S1P receptors to proliferation of astrocytes. Mol. Pharmacol., 64, 1199–1209 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Spiegel, S. and Milstien, S., Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol., 4, 397–407 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Steinman, L., Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell, 85, 299–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Steinman, L., Multiple sclerosis and gene expression profiling. Adv. Exp. Med. Biol., 490, 109–112 (2001).

    CAS  PubMed  Google Scholar 

  • Steinman, L. and Zamvil, S., Transcriptional analysis of targets in multiple sclerosis. Nat. Rev. Immunol., 3, 483–492 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Steinman, L., Nuanced roles of cytokines in three major human brain disorders. J. Clin. Invest., 118, 3557–3563 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Tani, M., Glabinski, A. R., Tuohy, V. K., Stoler, M. H., Estes, M. L., and Ransohoff, R. M., In situ hybridization analysis of glial fibrillary acidic protein mRNA reveals evidence of biphasic astrocyte activation during acute experimental autoimmune encephalomyelitis. Am. J. Pathol., 148, 889–896 (1996).

    CAS  PubMed  Google Scholar 

  • Tham, C. S., Lin, F. F., Rao, T. S., Yu, N., and Webb, M., Microglial activation state and lysophospholipid acid receptor expression. Int. J. Dev. Neurosci., 21, 431–443 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Toman, R. E., Payne, S. G., Watterson, K. R., Maceyka, M., Lee, N. H., Milstien, S., Bigbee, J. W., and Spiegel, S., Differential transactivation of sphingosine-1-phosphate receptors modulates NGF-induced neurite extension. J. Cell Biol., 166, 381–392 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Van Doorn, R., Van Horssen, J., Verzijl, D., Witte, M., Ronken, E., Van Het Hof, B., Lakeman, K., Dijkstra, C. D., Van Der Valk, P., Reijerkerk, A., Alewijnse, A. E., Peters, S. L., and De Vries, H. E., Sphingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia, 58, 1465–1476 (2010).

    PubMed  Google Scholar 

  • Webb, M., Tham, C. S., Lin, F. F., Lariosa-Willingham, K., Yu, N., Hale, J., Mandala, S., Chun, J., and Rao, T. S., Sphingosine 1-phosphate receptor agonists attenuate relapsing-remitting experimental autoimmune encephalitis in SJL mice. J. Neuroimmunol., 153, 108–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Williams, A., Piaton, G., and Lubetzki, C., Astrocytes—friends or foes in multiple sclerosis? Glia, 55, 1300–1312 (2007).

    Article  PubMed  Google Scholar 

  • Wu, Y. P., Mizugishi, K., Bektas, M., Sandhoff, R., and Proia, R. L., Sphingosine kinase 1/S1P receptor signaling axis controls glial proliferation in mice with Sandhoff disease. Hum. Mol. Genet., 17, 2257–2264 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Zamvil, S. S. and Steinman, L., Diverse targets for intervention during inflammatory and neurodegenerative phases of multiple sclerosis. Neuron, 38, 685–688 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Zemann, B., Kinzel, B., Muller, M., Reuschel, R., Mechtcheriakova, D., Urtz, N., Bornancin, F., Baumruker, T., and Billich, A., Sphingosine kinase type 2 is essential for lymphopenia induced by the immunomodulatory drug FTY720. Blood, 107, 1454–1458 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. H., Vasko, M. R., and Nicol, G. D., Intracellular sphingosine 1-phosphate mediates the increased excitability produced by nerve growth factor in rat sensory neurons. J. Physiol., 575, 101–113 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Woong Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.W., Choi, J.W. & Chun, J. Neurological S1P signaling as an emerging mechanism of action of oral FTY720 (Fingolimod) in multiple sclerosis. Arch. Pharm. Res. 33, 1567–1574 (2010). https://doi.org/10.1007/s12272-010-1008-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-1008-5

Key words

Navigation