Skip to main content

Advertisement

Log in

Increasing the effectiveness of intracerebral injections in adult and neonatal mice: a neurosurgical point of view

  • Method
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Intracerebral injections of tracers or viral constructs in rodents are now commonly used in the neurosciences and must be executed perfectly. The purpose of this article is to update existing protocols for intracerebral injections in adult and neonatal mice. Our procedure for stereotaxic injections in adult mice allows the investigator to improve the effectiveness and safety, and save time. Furthermore, for the first time, we describe a two-handed procedure for intracerebral injections in neonatal mice that can be performed by a single operator in a very short time. Our technique using the stereotaxic arm allows a higher precision than freehand techniques previously described. Stereotaxic injections in adult mice can be performed in 20 min and have >90% efficacy in targeting the injection site. Injections in neonatal mice can be performed in 5 min. Efficacy depends on the difficulty of precisely localizing the injection sites, due to the small size of the animal. We describe an innovative, effortless, and reproducible surgical protocol for intracerebral injections in adult and neonatal mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat Protoc 2010, 5: 247–254.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Puntel M, Kroeger KM, Sanderson NS, Thomas CE, Castro MG, Lowenstein PR. Gene transfer into rat brain using adenoviral vectors. Curr Protoc Neurosci 2010, Chapter 4: Unit 4 24.

    Google Scholar 

  3. Cetin A, Komai S, Eliava M, Seeburg PH, Osten P. Stereotaxic gene delivery in the rodent brain. Nat Protoc 2006, 1: 3166–3173.

    Article  CAS  PubMed  Google Scholar 

  4. Davidson S, Truong H, Nakagawa Y, Giesler GJ, Jr. A microinjection technique for targeting regions of embryonic and neonatal mouse brain in vivo. Brain Res 2010, 1307: 43–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Li J, Daly TM. Adeno-associated virus-mediated gene transfer to the neonatal brain. Methods 2002, 28: 203–207.

    Article  CAS  PubMed  Google Scholar 

  6. Pilpel N, Landeck N, Klugmann M, Seeburg PH, Schwarz MK. Rapid, reproducible transduction of select forebrain regions by targeted recombinant virus injection into the neonatal mouse brain. J Neurosci Methods 2009, 182: 55–63.

    Article  PubMed  Google Scholar 

  7. Shurey S, Akelina Y, Legagneux J, Malzone G, Jiga L, Ghanem AM. The rat model in microsurgery education: classical exercises and new horizons. Arch Plast Surg 2014, 41: 201–208.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Albrecht M, Henke J, Tacke S, Markert M, Guth B. Effects of isoflurane, ketamine-xylazine and a combination of medetomidine, midazolam and fentanyl on physiological variables continuously measured by telemetry in Wistar rats. BMC Vet Res 2014, 10: 198.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Redfors B, Shao Y, Omerovic E. Influence of anesthetic agent, depth of anesthesia and body temperature on cardiovascular functional parameters in the rat. Lab Anim 2014, 48: 6–14.

    Article  CAS  PubMed  Google Scholar 

  10. Hartsfield SM. Advantages and guidelines for using ketamine for induction of anesthesia. Vet Clin North Am Small Anim Pract 1992, 22: 266–267.

    Article  CAS  PubMed  Google Scholar 

  11. McDowell A, Fothergill JA, Khan A, Medlicott NJ. A cyclodextrin formulation to improve use of the anesthetic tribromoethanol (Avertin((R))). J Pharm Bioallied Sci 2014, 6: 16–21.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Meyer RE, Fish RE. A review of tribromoethanol anesthesia for production of genetically engineered mice and rats. Lab Anim (NY) 2005, 34: 47–52.

    Article  Google Scholar 

  13. Haberl MG, Viana da Silva S, Guest JM, Ginger M, Ghanem A, Mulle C, et al. An anterograde rabies virus vector for high-resolution large-scale reconstruction of 3D neuron morphology. Brain Struct Funct 2014.

    Google Scholar 

  14. Atasoy D, Aponte Y, Su HH, Sternson SM. A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long–range circuit mapping. J Neurosci 2008, 28: 7025–7030.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Mathon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathon, B., Nassar, M., Simonnet, J. et al. Increasing the effectiveness of intracerebral injections in adult and neonatal mice: a neurosurgical point of view. Neurosci. Bull. 31, 685–696 (2015). https://doi.org/10.1007/s12264-015-1558-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-015-1558-0

Keywords

Navigation