Skip to main content

Advertisement

Log in

Tissue Plasminogen Activator Expression Is Restricted to Subsets of Excitatory Pyramidal Glutamatergic Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although the extracellular serine protease tissue plasminogen activator (tPA) is involved in pathophysiological processes such as learning and memory, anxiety, epilepsy, stroke, and Alzheimer’s disease, information about its regional, cellular, and subcellular distribution in vivo is lacking. In the present study, we observed, in healthy mice and rats, the presence of tPA in endothelial cells, oligodendrocytes, mastocytes, and ependymocytes, but not in pericytes, microglial cells, and astrocytes. Moreover, blockage of the axo-dendritic transport unmasked tPA expression in neurons of cortical and hippocampal areas. Interestingly, combined electrophysiological recordings, single-cell reverse transcription polymerase chain reaction (RT-PCR), and immunohistological analyses revealed that the presence of tPA is restricted to subsets of excitatory pyramidal glutamatergic neurons. We further evidenced that tPA is stored in synaptobrevin-2-positive glutamatergic synaptic vesicles. Based on all these data, we propose the existence of tPA-ergic neurons in the mature brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Astrup T, Stage A (1952) Isolation of a soluble fibrinolytic activator from animal tissue. Nature 170:929

    Article  CAS  PubMed  Google Scholar 

  2. Tanswell P, Seifried E, Su PC et al (1989) Pharmacokinetics and systemic effects of tissue-type plasminogen activator in normal subjects. Clin Pharmacol Ther 46:155–62

    Article  CAS  PubMed  Google Scholar 

  3. Baranes D, Lederfein D, Huang Y, Chen M (1998) Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron 21:813–825

    Article  CAS  PubMed  Google Scholar 

  4. Madani R, Hulo S, Toni N et al (1999) Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. EMBO J 18:3007–12. doi:10.1093/emboj/18.11.3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pawlak R, Magarinos AM, Melchor J et al (2003) Tissue plasminogen activator in the amygdala is critical for stress- induced anxiety-like behavior. Nat Neurosci 6:168–174. doi:10.1038/nn998

    Article  CAS  PubMed  Google Scholar 

  6. Yepes M, Lawrence DA (2004) Tissue-type plasminogen activator and neuroserpin: a well-balanced act in the nervous system? Trends Cardiovasc Med 14:173–80. doi:10.1016/j.tcm.2004.03.004

    Article  CAS  PubMed  Google Scholar 

  7. Jacobsen JS, Comery TA, Martone RL et al (2008) Enhanced clearance of Abeta in brain by sustaining the plasmin proteolysis cascade. Proc Natl Acad Sci U S A 105:8754–9. doi:10.1073/pnas.0710823105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bukhari N, Torres L, Robinson JK, Tsirka SE (2011) Axonal regrowth after spinal cord injury via chondroitinase and the tissue plasminogen activator (tPA)/plasmin system. J Neurosci 31:14931–43. doi:10.1523/JNEUROSCI.3339-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Obiang P, Macrez R, Jullienne A et al (2012) GluN2D subunit-containing NMDA receptors control tissue plasminogen activator-mediated spatial memory. J Neurosci 32:12726–34. doi:10.1523/JNEUROSCI.6202-11.2012

    Article  CAS  PubMed  Google Scholar 

  10. Yepes M, Roussel BD, Ali C, Vivien D (2009) Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci 32:48–55. doi:10.1016/j.tins.2008.09.006

    Article  CAS  PubMed  Google Scholar 

  11. García-Rocha M, Avila J, Armas-Portela R (1994) Tissue-type plasminogen activator (tPA) is the main plasminogen activator associated with isolated rat nerve growth cones. Neurosci Lett 180:123–126. doi:10.1016/0304-3940(94)90502-9

    Article  PubMed  Google Scholar 

  12. Bruno MA, Cuello AC (2006) Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proc Natl Acad Sci U S A 103:6735–40. doi:10.1073/pnas.0510645103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rodier M, Prigent-Tessier A, Béjot Y et al (2014) Exogenous t-PA Administration Increases Hippocampal Mature BDNF Levels. Plasmin- or NMDA-Dependent Mechanism? PLoS One 9:e92416. doi:10.1371/journal.pone.0092416

    Article  PubMed  PubMed Central  Google Scholar 

  14. Orth K, Willnow T, Herz J et al (1994) Low density lipoprotein receptor-related protein is necessary for the internalization of both tissue-type plasminogen activator-inhibitor complexes and free tissue-type plasminogen activator. J Biol Chem 269:21117–22

    CAS  PubMed  Google Scholar 

  15. Yepes M, Sandkvist M, Moore EG et al (2003) Tissue-type plasminogen activator induces opening of the blood–brain barrier via the LDL receptor-related protein. J Clin Invest 112:1533–1540. doi:10.1172/JCI200319212.Introduction

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Benchenane K, Berezowski V, Ali C et al (2005) Tissue-type plasminogen activator crosses the intact blood–brain barrier by low-density lipoprotein receptor-related protein-mediated transcytosis. Circulation 111:2241–9. doi:10.1161/01.CIR.0000163542.48611.A2

    Article  CAS  PubMed  Google Scholar 

  17. Nicole O, Docagne F, Ali C et al (2001) The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med 7:59–64. doi:10.1038/83358

    Article  CAS  PubMed  Google Scholar 

  18. Samson AL, Nevin ST, Croucher D et al (2008) Tissue-type plasminogen activator requires a co-receptor to enhance NMDA receptor function. J Neurochem 107:1091–101. doi:10.1111/j.1471-4159.2008.05687.x

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Siao C-J, Tsirka SE (2002) Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II. J Neurosci 22:3352–8. doi: 20026281

  20. Correa F, Gauberti M, Parcq J et al (2011) Tissue plasminogen activator prevents white matter damage following stroke. J Exp Med 208:1229–42. doi:10.1084/jem.20101880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mascagni F, McDonald AJ (2003) Immunohistochemical characterization of cholecystokinin containing neurons in the rat basolateral amygdala. Brain Res 976:171–184. doi:10.1016/S0006-8993(03)02625-8

    Article  CAS  PubMed  Google Scholar 

  22. Stanić D, Mulder J, Watanabe M, Hökfelt T (2011) Characterization of NPY Y2 receptor protein expression in the mouse brain. II. Coexistence with NPY, the Y1 receptor, and other neurotransmitter-related molecules. J Comp Neurol 519:1219–57. doi:10.1002/cne.22608

    Article  PubMed  Google Scholar 

  23. Karagiannis A, Gallopin T, Dávid C et al (2009) Classification of NPY-expressing neocortical interneurons. J Neurosci 29:3642–59. doi:10.1523/JNEUROSCI.0058-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cauli B, Audinat E, Lambolez B et al (1997) Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci 17:3894–906

    CAS  PubMed  Google Scholar 

  25. Lambolez B, Audinat E, Bochet P et al (1992) AMPA receptor subunits expressed by single purkinje cells. Neuron 9:247–258. doi:10.1016/0896-6273(92)90164-9

    Article  CAS  PubMed  Google Scholar 

  26. Ahmed S, Holt M, Riedel D, Jahn R (2013) Small-scale isolation of synaptic vesicles from mammalian brain. Nat Protoc 8:998–1009. doi:10.1038/nprot.2013.053

    Article  PubMed  Google Scholar 

  27. Martineau M, Shi T, Puyal J et al (2013) Storage and uptake of D-serine into astrocytic synaptic-like vesicles specify gliotransmission. J Neurosci 33:3413–23. doi:10.1523/JNEUROSCI.3497-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gualandris A, Jones TE, Strickland S, Tsirka SE (1996) Membrane Depolarization Induces Calcium-Dependent Secretion of Tissue Plasminogen activator. J Neurosci 16:2220–2225

    CAS  PubMed  Google Scholar 

  29. Tsirka S, Rogove A, Bugge T et al (1997) An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. J Neurosci 17:543–552

    CAS  PubMed  Google Scholar 

  30. Teesalu T, Kulla A, Simisker A (2004) Tissue plasminogen activator and neuroserpin are widely expressed in the human central nervous system. Thromb Haemost 92:358–368. doi:10.1160/TH02-12-0310

    CAS  PubMed  Google Scholar 

  31. Castorina A, D’Amico AG, Scuderi S et al (2013) Dopamine D3 receptor deletion increases tissue plasminogen activator (tPA) activity in prefrontal cortex and hippocampus. Neuroscience 250:546–56. doi:10.1016/j.neuroscience.2013.07.053

    Article  CAS  PubMed  Google Scholar 

  32. Li J, Yu L, Gu X, et al. (2013) Tissue plasminogen activator regulates Purkinje neuron development and survival. Proc Natl Acad Sci U S A 1–10. doi: 10.1073/pnas.1305010110

  33. Ascoli GA, Alonso-Nanclares L, Anderson SA et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–68. doi:10.1038/nrn2402

    Article  CAS  PubMed  Google Scholar 

  34. McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54:782–806

    CAS  PubMed  Google Scholar 

  35. Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99–104

    Article  CAS  PubMed  Google Scholar 

  36. Kasper EM, Lübke J, Larkman AU, Blakemore C (1994) Pyramidal neurons in layer 5 of the rat visual cortex. III. Differential maturation of axon targeting, dendritic morphology, and electrophysiological properties. J Comp Neurol 339:495–518. doi:10.1002/cne.903390404

    Article  CAS  PubMed  Google Scholar 

  37. Christophe E, Doerflinger N, Lavery DJ et al (2005) Two populations of layer v pyramidal cells of the mouse neocortex: development and sensitivity to anesthetics. J Neurophysiol 94:3357–67. doi:10.1152/jn.00076.2005

    Article  CAS  PubMed  Google Scholar 

  38. Voelker CCJ, Garin N, Taylor JSH et al (2004) Selective neurofilament (SMI-32, FNP-7 and N200) expression in subpopulations of layer V pyramidal neurons in vivo and in vitro. Cereb Cortex 14:1276–86. doi:10.1093/cercor/bhh089

    Article  PubMed  Google Scholar 

  39. Sorensen SA, Bernard A, Menon V et al (2015) Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. Cereb Cortex 25:433–49. doi:10.1093/cercor/bht243

    Article  PubMed  Google Scholar 

  40. Hevner RF, Shi L, Justice N et al (2001) Tbr1 Regulates Differentiation of the Preplate and Layer 6. Neuron 29:353–366. doi:10.1016/S0896-6273(01)00211-2

    Article  CAS  PubMed  Google Scholar 

  41. Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–7. doi:10.1038/nature11320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Crippa D, Schenk U, Francolini M et al (2006) Synaptobrevin2-expressing vesicles in rat astrocytes: insights into molecular characterization, dynamics and exocytosis. J Physiol 570:567–82. doi:10.1113/jphysiol.2005.094052

    Article  CAS  PubMed  Google Scholar 

  43. Martineau M, Galli T, Baux G, Mothet J-P (2008) Confocal imaging and tracking of the exocytotic routes for D-serine-mediated gliotransmission. Glia 56:1271–84. doi:10.1002/glia.20696

    Article  PubMed  Google Scholar 

  44. Zlokovic BV, Wang L, Sun N et al (1995) Expression of tissue plasminogen activator in cerebral capillaries: possible fibrinolytic function of the blood–brain barrier. Neurosurgery 37:955–961

    Article  CAS  PubMed  Google Scholar 

  45. Levin EG, Santell L, Osborn KG (1997) The expression of endothelial tissue plasminogen activator in vivo: a function defined by vessel size and anatomic location. J Cell Sci 110:139–48

    CAS  PubMed  Google Scholar 

  46. Docagne F, Nicole O, Marti HH et al (1999) Transforming growth factor-beta1 as a regulator of the serpins/t-PA axis in cerebral ischemia. FASEB J 13:1315–24

    CAS  PubMed  Google Scholar 

  47. Joo SH, Kwon KJ, Kim JW et al (2010) Regulation of matrix metalloproteinase-9 and tissue plasminogen activator activity by alpha-synuclein in rat primary glial cells. Neurosci Lett 469:352–6. doi:10.1016/j.neulet.2009.12.026

    Article  CAS  PubMed  Google Scholar 

  48. Adhami F, Yu D, Yin W et al (2008) Deleterious effects of plasminogen activators in neonatal cerebral hypoxia-ischemia. Am J Pathol 172:1704–16. doi:10.2353/ajpath.2008.070979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim JW, Lee SH, Ko HM et al (2011) Biphasic regulation of tissue plasminogen activator activity in ischemic rat brain and in cultured neural cells: essential role of astrocyte-derived plasminogen activator inhibitor-1. Neurochem Int 58:423–33. doi:10.1016/j.neuint.2010.12.020

    Article  CAS  PubMed  Google Scholar 

  50. Ludwig R, Feindt J, Lucius R et al (1996) Metabolism of neuropeptide Y and calcitonin gene-related peptide by cultivated neurons and glial cells. Brain Res Mol Brain Res 37:181–91

    Article  CAS  PubMed  Google Scholar 

  51. Kalderon N, Ahonen K, Fedoroff S (1990) Developmental transition in plasticity properties of differentiating astrocytes: age-related biochemical profile of plasminogen activators in astroglial cultures. Glia 3:413–26. doi:10.1002/glia.440030513

    Article  CAS  PubMed  Google Scholar 

  52. Sillaber C, Baghestanian M, Bevec D et al (1999) The mast cell as site of tissue-type plasminogen activator expression and fibrinolysis. J Immunol 162:1032–41

    CAS  PubMed  Google Scholar 

  53. Yamamoto C, Sugato M, Fujiwara Y, Kaji T (2005) Selective promotion of plasminogen activator inhibitor-1 secretion by activation of proteinase-activated receptor-1 in cultured human brain microvascular pericytes: comparison with endothelial cells. Biol Pharm Bull 28:208–11

    Article  CAS  PubMed  Google Scholar 

  54. Ware J, Dibenedetto A, Pittman R (1995) Localization of tissue plasminogen activator mRNA in adult rat brain. Brain Res Bull 37:275–281

    Article  CAS  PubMed  Google Scholar 

  55. Tabengwa EM, Wheeler CG, Yancey DA et al (2002) Alcohol-Induced Up-Regulation of Fibrinolytic Activity and Plasminogen Activators in Human Monocytes. Alcohol Clin Exp Res 26:1121–1127. doi:10.1111/j.1530-0277.2002.tb02647.x

    Article  CAS  PubMed  Google Scholar 

  56. Sappino A, Madani R, Huarte J (1993) Extracellular proteolysis in the adult murine brain. J Clin Invest 92:679–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Salles FJ, Strickland S (2002) Localization and regulation of the tissue plasminogen activator-plasmin system in the hippocampus. J Neurosci 22:2125–34

    CAS  PubMed  Google Scholar 

  58. Seeds NW, Williams BL, Bickford PC (1995) Tissue Plasminogen Activator Induction in Purkinje Neurons After Cerebellar Motor Learning. Science (80-. ).

  59. Cho M-K, Sun E-S, Kim Y-H (2013) Zinc-triggered induction of tissue plasminogen activator and plasminogen in endothelial cells and pericytes. Exp Neurobiol 22:315–21. doi:10.5607/en.2013.22.4.315

    Article  PubMed  PubMed Central  Google Scholar 

  60. Krystosek A, Seeds N (1981) Plasminogen activator release at the neuronal growth cone. Science (80- ) 213:1532–1534.

  61. Pittman RN, Ivins JK, Buettner HM (1989) Neuronal plasminogen activators: cell surface binding sites and involvement in neurite outgrowth. J Neurosci 9:4269–86

    CAS  PubMed  Google Scholar 

  62. Lochner JE, Kingma M, Kuhn S et al (1998) Real-time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid. Mol Biol Cell 9:2463–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lochner JE, Spangler E, Chavarha M et al (2008) Efficient copackaging and cotransport yields postsynaptic colocalization of neuromodulators associated with synaptic plasticity. Dev Neurobiol 68:1243–56. doi:10.1002/dneu.20650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shin CY, Kundel M, Wells DG (2004) Rapid, activity-induced increase in tissue plasminogen activator is mediated by metabotropic glutamate receptor-dependent mRNA translation. J Neurosci 24:9425–33. doi:10.1523/JNEUROSCI.2457-04.2004

    Article  CAS  PubMed  Google Scholar 

  65. Seeds N, Williams B, Bickford P (1995) Tissue plasminogen activator induction in Purkinje neurons after cerebellar motor learning. Science (80- ) 270:1992–1994.

  66. Bennur S, Shankaranarayana Rao BS, Pawlak R et al (2007) Stress-induced spine loss in the medial amygdala is mediated by tissue-plasminogen activator. Neuroscience 144:8–16. doi:10.1016/j.neuroscience.2006.08.075

    Article  CAS  PubMed  Google Scholar 

  67. Gorter JA, Van Vliet EA, Rauwerda H et al (2007) Dynamic changes of proteases and protease inhibitors revealed by microarray analysis in CA3 and entorhinal cortex during epileptogenesis in the rat. Epilepsia 48:53–64. doi:10.1111/j.1528-1167.2007.01290.x

    Article  CAS  PubMed  Google Scholar 

  68. Tsirka S, Gualandris A, Amaral D, Strickland S (1995) Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 377:340–344

    Article  CAS  PubMed  Google Scholar 

  69. Siao C-J, Fernandez SR, Tsirka SE (2003) Cell type-specific roles for tissue plasminogen activator released by neurons or microglia after excitotoxic injury. J Neurosci 23:3234–42

    CAS  PubMed  Google Scholar 

  70. Pang PT, Teng HK, Zaitsev E et al (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306:487–91. doi:10.1126/science.1100135

    Article  CAS  PubMed  Google Scholar 

  71. Samson AL, Medcalf RL (2006) Tissue-type plasminogen activator: minireview a multifaceted modulator of neurotransmission and synaptic plasticity. Neuron 50:673–678. doi:10.1016/j.neuron.2006.04.013

    Article  CAS  PubMed  Google Scholar 

  72. Baron A, Montagne A, Cassé F et al (2010) NR2D-containing NMDA receptors mediate tissue plasminogen activator-promoted neuronal excitotoxicity. Cell Death Differ 17:860–71. doi:10.1038/cdd.2009.172

    Article  CAS  PubMed  Google Scholar 

  73. Centonze D, Napolitano M, Saulle E et al (2002) Tissue plasminogen activator is required for corticostriatal long-term potentiation. Eur J Neurosci 16:713–721. doi:10.1046/j.1460-9568.2002.02106.x

    Article  PubMed  Google Scholar 

  74. Silverman MA, Johnson S, Gurkins D et al (2005) Mechanisms of transport and exocytosis of dense-core granules containing tissue plasminogen activator in developing hippocampal neurons. J Neurosci 25:3095–106. doi:10.1523/JNEUROSCI.4694-04.2005

    Article  CAS  PubMed  Google Scholar 

  75. Tobin V, Schwab Y, Lelos N et al (2012) Expression of exocytosis proteins in rat supraoptic nucleus neurones. J Neuroendocrinol 24:629–41. doi:10.1111/j.1365-2826.2011.02237.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fernández-Monreal M, López-Atalaya JP, Benchenane K et al (2004) Arginine 260 of the amino-terminal domain of NR1 subunit is critical for tissue-type plasminogen activator-mediated enhancement of N-methyl-D-aspartate receptor signaling. J Biol Chem 279:50850–6. doi:10.1074/jbc.M407069200

    Article  PubMed  Google Scholar 

  77. Zhuo M, Holtzman DM, Li Y et al (2000) Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J Neurosci 20:542–9

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the INSERM (French National Institute for Health and Medical Research) (D.V.), the University of Caen Basse-Normandie (D.V.), Era-net Neuron program “ProteA” EU FP7 (D.V.), ANR 2011 MALZ 003 01 (B.C.), and “IHU Institut de Neurosciences Translationelles de Paris,” ANR-10-IAIHU-06 (B.C. and B.L.). Part of this work was coordinated by CEA/MIRCen/IB2M and supported by the association France Alzheimer (B.C.). G.M. is supported by a grant from the Fondation pour la Recherche Médicale and J-P.M. receives operating grants from Centre National de la Recherche Scientifique, France Alzheimer, and Université Aix-Marseille. The authors also thanks Pr.Carine ALI for her suggestions during the elaboration of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Vivien.

Additional information

Denis Vivien and Eric Maubert contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 551 kb)

ESM 2

(PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louessard, M., Lacroix, A., Martineau, M. et al. Tissue Plasminogen Activator Expression Is Restricted to Subsets of Excitatory Pyramidal Glutamatergic Neurons. Mol Neurobiol 53, 5000–5012 (2016). https://doi.org/10.1007/s12035-015-9432-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9432-7

Keywords

Navigation