Skip to main content

Advertisement

Log in

Target Gene Repression Mediated by miRNAs miR-181c and miR-9 Both of Which Are Down-regulated by Amyloid-β

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small non-coding RNA regulators of protein synthesis that are essential for normal brain development and function. Their profiles are significantly altered in neurodegenerative diseases such as Alzheimer’s disease (AD) that is characterized by amyloid-β (Aβ) and tau deposition in brain. How deregulated miRNAs contribute to AD is not understood, as their dysfunction could be both a cause and a consequence of disease. To address this question we had previously profiled miRNAs in models of AD. This identified miR-9 and -181c as being down-regulated by Aβ in hippocampal cultures. Interestingly, there was a remarkable overlap with those miRNAs that are deregulated in Aβ-depositing APP23 transgenic mice and in human AD tissue. While the Aβ precursor protein APP itself is a target of miRNA regulation, the challenge resides in identifying further targets. Here, we expand the repertoire of miRNA target genes by identifying the 3′ untranslated regions (3′ UTRs) of TGFBI, TRIM2, SIRT1 and BTBD3 as being repressed by miR-9 and -181c, either alone or in combination. Taken together, our study identifies putative target genes of miRNAs miR-9 and 181c, which may function in brain homeostasis and disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baek D, Villen J, Shin C, Camargo FD et al (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  PubMed  CAS  Google Scholar 

  • Balastik M, Ferraguti F, Pires-da Silva A, Lee TH et al (2008) Deficiency in ubiquitin ligase TRIM2 causes accumulation of neurofilament light chain and neurodegeneration. Proc Natl Acad Sci U S A 105:12016–12021

    Article  PubMed  CAS  Google Scholar 

  • Baur JA, Pearson KJ, Price NL, Jamieson HA et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  PubMed  CAS  Google Scholar 

  • Beilharz TH, Humphreys DT, Clancy JL, Thermann R et al (2009) microRNA-mediated messenger RNA deadenylation contributes to translational repression in mammalian cells. PLoS ONE 4:e6783

    Article  PubMed  Google Scholar 

  • Boissonneault V, Plante I, Rivest S, Provost P (2009) MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem 284:1971–1981

    Article  PubMed  CAS  Google Scholar 

  • Clancy JL, Nousch M, Humphreys DT, Westman BJ et al (2007) Methods to analyze microRNA-mediated control of mRNA translation. Methods Enzymol 431:83–111

    Article  PubMed  CAS  Google Scholar 

  • Cogswell JP, Ward J, Taylor IA, Waters M et al (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14:27–41

    PubMed  CAS  Google Scholar 

  • Cole AR, Noble W, van Aalten L, Plattner F et al (2007) Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer’s disease progression. J Neurochem 103:1132–1144

    Article  PubMed  CAS  Google Scholar 

  • da Cruz e Silva OA, Henriques AG, Domingues SC, da Cruz e Silva EF (2010) Wnt signalling is a relevant pathway contributing to amyloid beta-peptide-mediated neuropathology in Alzheimer’s disease. CNS Neurol Disord Drug Targets 9:720–726

  • Damgaard T, Knudsen LM, Dahl IM, Gimsing P et al (2009) Regulation of the CD56 promoter and its association with proliferation, anti-apoptosis and clinical factors in multiple myeloma. Leuk Lymphoma 50:236–246

    Article  PubMed  CAS  Google Scholar 

  • David D, Hoerndli F, Gotz J (2005) Functional genomics meets neurodegenerative disorders: Part I. Transcriptomic and proteomic technology. Prog Neurobiol 76:153–168

    Article  PubMed  CAS  Google Scholar 

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  PubMed  CAS  Google Scholar 

  • Gotz J, Ittner LM, Fandrich M, Schonrock N (2008a) Is tau aggregation toxic or protective: a sensible question in the absence of sensitive methods? J Alzheimers Dis 14:423–429

    PubMed  Google Scholar 

  • Gotz J, Ittner LM, Schonrock N, Cappai R (2008b) An update on the toxicity of Abeta in Alzheimer’s disease. Neuropsychiatr Dis Treat 4:1033–1042

    Article  PubMed  CAS  Google Scholar 

  • Haramati S, Chapnik E, Sztainberg Y, Eilam R et al (2010) miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci U S A 107:13111–13116

    Article  PubMed  CAS  Google Scholar 

  • Hebert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32:199–206

    Article  PubMed  CAS  Google Scholar 

  • Hebert SS, Horre K, Nicolai L, Papadopoulou AS et al (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 105:6415–6420

    Article  PubMed  CAS  Google Scholar 

  • Hebert SS, Horre K, Nicolai L, Bergmans B et al (2009) MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis 33:422–428

    Article  PubMed  CAS  Google Scholar 

  • Hoerndli FJ, Toigo M, Schild A, Gotz J et al (2004) Reference genes identified in SH-SY5Y cells using custom-made gene arrays with validation by quantitative polymerase chain reaction. Anal Biochem 335:30–41

    Article  PubMed  CAS  Google Scholar 

  • Hoerndli F, David D, Gotz J (2005) Functional genomics meets neurodegenerative disorders: Part II. Application and data integration. Prog Neurobiol 76:169–188

    Article  PubMed  CAS  Google Scholar 

  • Humphreys DT, Westman BJ, Martin DI, Preiss T (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A 102:16961–16966

    Article  PubMed  CAS  Google Scholar 

  • Hutchison ER, Okun E, Mattson MP (2009) The therapeutic potential of microRNAs in nervous system damage, degeneration, and repair. Neuromol Med 11:153–161

    Article  CAS  Google Scholar 

  • Ittner LM, Ke YD, Delerue F, Bi M et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142:387–397

    Article  PubMed  CAS  Google Scholar 

  • Kurosinski P, Gotz J (2002) Glial cells under physiologic and pathological conditions. Arch Neurol 59:1524–1528

    Article  PubMed  Google Scholar 

  • Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    Article  PubMed  CAS  Google Scholar 

  • Landgraf P, Rusu M, Sheridan R, Sewer A et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  PubMed  CAS  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  PubMed  CAS  Google Scholar 

  • Lim Y-A, Rhein V, Baysang G, Meier F et al (2010) Abeta and human amylin share a common toxicity pathway via mitochondrial dysfunction. Proteomics 10:1621–1633

    Article  PubMed  CAS  Google Scholar 

  • Lin B, Madan A, Yoon JG, Fang X et al (2010) Massively parallel signature sequencing and bioinformatics analysis identifies up-regulation of TGFBI and SOX4 in human glioblastoma. PLoS ONE 5:e10210

    Article  PubMed  Google Scholar 

  • Ma C, Rong Y, Radiloff DR, Datto MB et al (2008) Extracellular matrix protein betaig-h3/TGFBI promotes metastasis of colon cancer by enhancing cell extravasation. Genes Dev 22:308–321

    Article  PubMed  Google Scholar 

  • Nelson PT, Wang WX (2010) MiR-107 is reduced in Alzheimer’s disease brain neocortex: validation study. J Alzheimers Dis 21:75–79

    PubMed  CAS  Google Scholar 

  • Nunez-Iglesias J, Liu CC, Morgan TE, Finch CE et al (2010) Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS ONE 5:e8898

    Article  PubMed  Google Scholar 

  • Ohkawa N, Kokura K, Matsu-Ura T, Obinata T et al (2001) Molecular cloning and characterization of neural activity-related RING finger protein (NARF): a new member of the RBCC family is a candidate for the partner of myosin V. J Neurochem 78:75–87

    Article  PubMed  CAS  Google Scholar 

  • Ono K, Condron MM, Teplow DB (2009) Structure–neurotoxicity relationships of amyloid beta-protein oligomers. Proc Natl Acad Sci U S A 106:14745–14750

    Article  PubMed  CAS  Google Scholar 

  • Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13:812–818

    Article  PubMed  CAS  Google Scholar 

  • Qin W, Yang T, Ho L, Zhao Z et al (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281:21745–21754

    Article  PubMed  CAS  Google Scholar 

  • Rane S, He M, Sayed D, Vashistha H et al (2009) Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 104:879–886

    Article  PubMed  CAS  Google Scholar 

  • Salminen A, Kaarniranta K (2009) SIRT1: regulation of longevity via autophagy. Cell Signal 21:1356–1360

    Article  PubMed  CAS  Google Scholar 

  • Saunders LR, Sharma AD, Tawney J, Nakagawa M et al (2010) miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany, NY) 2:415–431

    CAS  Google Scholar 

  • Schild A, Schmidt K, Lim YA, Ke Y et al (2006) Altered levels of PP2A regulatory B/PR55 isoforms indicate role in neuronal differentiation. Int J Dev Neurosci 24:437–443

    Article  PubMed  CAS  Google Scholar 

  • Schonrock N, Ke YD, Humphreys D, Staufenbiel M et al (2010) Neuronal microRNA deregulation in response to Alzheimer’s disease amyloid-beta. PLoS ONE 5:e11070

    Article  PubMed  Google Scholar 

  • Selbach M, Schwanhausser B, Thierfelder N, Fang Z et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ, Podlisny MB (2002) Deciphering the genetic basis of Alzheimer’s disease. Annu Rev Genomics Hum Genet 3:67–99

    Article  PubMed  CAS  Google Scholar 

  • Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38:323–332

    Article  PubMed  CAS  Google Scholar 

  • Sud A, Del Bono EA, Haines JL, Wiggs JL (2008) Fine mapping of the GLC1K juvenile primary open-angle glaucoma locus and exclusion of candidate genes. Mol Vis 14:1319–1326

    PubMed  CAS  Google Scholar 

  • Tesseur I, Zou K, Esposito L, Bard F et al (2006) Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest 116:3060–3069

    Article  PubMed  CAS  Google Scholar 

  • Tomiyama T, Matsuyama S, Iso H, Umeda T et al (2010) A mouse model of amyloid beta oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J Neurosci 30:4845–4856

    Article  PubMed  CAS  Google Scholar 

  • Vilardo E, Barbato C, Ciotti M, Cogoni C et al (2010) MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J Biol Chem 285:18344–18351

    Article  PubMed  CAS  Google Scholar 

  • Wang WX, Rajeev BW, Stromberg AJ, Ren N et al (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28:1213–1223

    Article  PubMed  Google Scholar 

  • Wang WX, Wilfred BR, Madathil SK, Tang G et al (2010) miR-107 regulates granulin/progranulin with implications for traumatic brain injury and neurodegenerative disease. Am J Pathol 177:334–345

    Article  PubMed  CAS  Google Scholar 

  • Wilquet V, De Strooper B (2004) Amyloid-beta precursor protein processing in neurodegeneration. Curr Opin Neurobiol 14:582–588

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Xu B, Yuan P, Ott J et al (2010) Genome-wide examination of genetic variants associated with response to platinum-based chemotherapy in patients with small-cell lung cancer. Pharmacogenet Genomics 20:389–395

    Article  PubMed  CAS  Google Scholar 

  • Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 105:13421–13426

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the Victor Chang Cardiac Research Institute (DH, TP), the National Health & Medical Research Council (JG, TP), the Australian Research Council (JG, TP), and the J.O. & J.R. Wicking Trust (JG). Postgraduate scholarship support for the laboratory of JG has been provided by the Wenkart Foundation and by Alzheimer’s Australia. NS is supported by the Human Frontier Science Program (HFSP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Götz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schonrock, N., Humphreys, D.T., Preiss, T. et al. Target Gene Repression Mediated by miRNAs miR-181c and miR-9 Both of Which Are Down-regulated by Amyloid-β. J Mol Neurosci 46, 324–335 (2012). https://doi.org/10.1007/s12031-011-9587-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9587-2

Keywords

Navigation