Skip to main content
Log in

The Ubiquitin–Proteasome System Regulates the Stability of Neuronal Nicotinic Acetylcholine Receptors

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Ubiquitination is a key event for protein degradation by the proteasome system, membrane protein internalization, and protein trafficking among cellular compartments. Few data are available on the role of the ubiquitin–proteasome system (UPS) in the trafficking of neuronal nicotinic acetylcholine receptors (nAChRs). Experiments conducted in neuron-like differentiated rat pheochromocytoma cells (PC12 cells) show that the α3, β2, and β4 nAChR subunits are ubiquitinated and that their ubiquitination is necessary for degradation. A 24-h treatment with the proteasome inhibitor PS-341 increased the total levels of α3 and the two β subunits in both whole cell lysates and fractions enriched for the ER/Golgi compartment. nAChR subunit upregulation was also detected in plasma membrane-enriched fractions. Inhibition of the lysosomal degradation machinery by E-64 had a significantly smaller effect on nAChR turnover. The present data, together with previous results showing that the α7 nAChR subunit is a target of the UPS, point to a prominent role of the proteasome in nAChR trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Ahlberg, J., Berkenstam, A., Henell, F., & Glaumann, H. (1985). Degradation of short and long lived proteins in isolated rat liver lysosomes. Effects of pH, temperature, and proteolytic inhibitors. Journal of Biological Chemistry, 260, 5847–5854.

    CAS  PubMed  Google Scholar 

  • Albuquerque, E. X., Pereira, E. F., Alkondon, M., & Rogers, S. W. (2009). Mammalian nicotinic acetylcholine receptors: From structure to function. Physiological Reviews, 89, 73–120.

    Article  CAS  PubMed  Google Scholar 

  • Beck, T., Schmidt, A., & Hall, M. N. (1999). Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. Journal of Cell Biology, 146, 1227–1238.

    Article  CAS  PubMed  Google Scholar 

  • Blondel, M. O., Morvan, J., Dupre, S., Urban-Grimal, D., Haguenauer-Tsapis, R., & Volland, C. (2004). Direct sorting of the yeast uracil permease to the endosomal system is controlled by uracil binding and Rsp5p-dependent ubiquitylation. Molecular Biology of the Cell, 15, 883–895.

    Article  CAS  PubMed  Google Scholar 

  • Blount, P., & Merlie, J. P. (1990). Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly. Journal of Cell Biology, 111, 2613–2622.

    Article  CAS  PubMed  Google Scholar 

  • Blount, P., & Merlie, J. P. (1991). BIP associates with newly synthesized subunits of the mouse muscle nicotinic receptor. Journal of Cell Biology, 113, 1125–1132.

    Article  CAS  PubMed  Google Scholar 

  • Brockhausen, J., Cole, R. N., Gervasio, O. L., Ngo, S. T., Noakes, P. G., & Phillips, W. D. (2008). Neural agrin increases postsynaptic ACh receptor packing by elevating rapsyn protein at the mouse neuromuscular synapse. Dev Neurobiol, 68, 1153–1169.

    Article  CAS  PubMed  Google Scholar 

  • Castelan, F., Castillo, M., Mulet, J., Sala, S., Sala, F., Dominguez Del Toro, E., et al. (2008). Molecular characterization and localization of the RIC-3 protein, an effector of nicotinic acetylcholine receptor expression. Journal of Neurochemistry, 105, 617–627.

    Article  CAS  PubMed  Google Scholar 

  • Castillo, M., Mulet, J., Gutierrez, L. M., Ortiz, J. A., Castelan, F., Gerber, S., et al. (2006). Role of the RIC-3 protein in trafficking of serotonin and nicotinic acetylcholine receptors. Journal of Molecular Neuroscience, 30, 153–156.

    Article  CAS  PubMed  Google Scholar 

  • Christianson, J. C., & Green, W. N. (2004). Regulation of nicotinic receptor expression by the ubiquitin-proteasome system. EMBO Journal, 23, 4156–4165.

    Article  CAS  PubMed  Google Scholar 

  • Claudio, T., Paulson, H. L., Green, W. N., Ross, A. F., Hartman, D. S., & Hayden, D. (1989). Fibroblasts transfected with Torpedo acetylcholine receptor beta-, gamma-, and delta-subunit cDNAs express functional receptors when infected with a retroviral alpha recombinant. Journal of Cell Biology, 108, 2277–2290.

    Article  CAS  PubMed  Google Scholar 

  • Clementi, F., Sher, E., & Erroi, A. (1983). Acetylcholine receptor degradation: Study of mechanism of action of inhibitory drugs. European Journal of Cell Biology, 29, 274–280.

    CAS  PubMed  Google Scholar 

  • Court, J., Spurden, D., Lloyd, S., McKeith, I., Ballard, C., Cairns, N., et al. (1999). Neuronal nicotinic receptors in dementia with Lewy bodies and schizophrenia: Alpha-bungarotoxin and nicotine binding in the thalamus. Journal of Neurochemistry, 73, 1590–1597.

    Article  CAS  PubMed  Google Scholar 

  • Court, J., Martin-Ruiz, C., Piggott, M., Spurden, D., Griffiths, M., & Perry, E. (2001). Nicotinic receptor abnormalities in Alzheimer's disease. Biological Psychiatry, 49, 175–184.

    Article  CAS  PubMed  Google Scholar 

  • Dani, J. A., & De Biasi, M. (2001). Cellular mechanisms of nicotine addiction. Pharmacology, Biochemistry and Behavior, 70, 439–446.

    Article  CAS  Google Scholar 

  • Darsow, T., Booker, T. K., Pina-Crespo, J. C., & Heinemann, S. F. (2005). Exocytic trafficking is required for nicotine-induced up-regulation of alpha 4 beta 2 nicotinic acetylcholine receptors. Journal of Biological Chemistry, 280, 18311–18320.

    Article  CAS  PubMed  Google Scholar 

  • De Biasi, M. (2002). Nicotinic mechanisms in the autonomic control of organ systems. Journal of Neurobiology, 53, 568–579.

    Article  PubMed  Google Scholar 

  • De Biasi, M., & Salas, R. (2008). Influence of neuronal nicotinic receptors over nicotine addiction and withdrawal. Experimental Biology and Medicine (Maywood), 233, 917–929.

    Article  Google Scholar 

  • Dwyer, J. B., McQuown, S. C., & Leslie, F. M. (2009). The dynamic effects of nicotine on the developing brain. Pharmacology & Therapeutics, 122(2), 125–139.

    Article  CAS  Google Scholar 

  • Ehlers, M. D. (2000). Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron, 28, 511–525.

    Article  CAS  PubMed  Google Scholar 

  • Eimer, S., Gottschalk, A., Hengartner, M., Horvitz, H. R., Richmond, J., Schafer, W. R., et al. (2007). Regulation of nicotinic receptor trafficking by the transmembrane Golgi protein UNC-50. EMBO Journal, 26(20), 4313–4323.

    Article  CAS  PubMed  Google Scholar 

  • Ficklin, M. B., Zhao, S., & Feng, G. (2005). Ubiquilin-1 regulates nicotine-induced up-regulation of neuronal nicotinic acetylcholine receptors. Journal of Biological Chemistry, 280, 34088–34095.

    Article  CAS  PubMed  Google Scholar 

  • Forsayeth, J. R., Gu, Y., & Hall, Z. W. (1992). BiP forms stable complexes with unassembled subunits of the acetylcholine receptor in transfected COS cells and in C2 muscle cells. Journal of Cell Biology, 117, 841–847.

    Article  CAS  PubMed  Google Scholar 

  • Fujita, E., Kouroku, Y., Isoai, A., Kumagai, H., Misutani, A., Matsuda, C., et al. (2007). Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: Ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Human Molecular Genetics, 16, 618–629.

    Article  CAS  PubMed  Google Scholar 

  • Gelman, M. S., Chang, W., Thomas, D. Y., Bergeron, J. J., & Prives, J. M. (1995). Role of the endoplasmic reticulum chaperone calnexin in subunit folding and assembly of nicotinic acetylcholine receptors. Journal of Biological Chemistry, 270, 15085–15092.

    Article  CAS  PubMed  Google Scholar 

  • Grinde, B., & Seglen, P. O. (1980). Differential effects of proteinase inhibitors and amines on the lysosomal and non-lysosomal pathways of protein degradation in isolated rat hepatocytes. Biochimica et Biophysica Acta, 632, 73–86.

    CAS  PubMed  Google Scholar 

  • Gu, Y., Forsayeth, J. R., Verrall, S., Yu, X. M., & Hall, Z. W. (1991). Assembly of the mammalian muscle acetylcholine receptor in transfected COS cells. Journal of Cell Biology, 114, 799–807.

    Article  CAS  PubMed  Google Scholar 

  • Haas, K. F., & Broadie, K. (2008). Roles of ubiquitination at the synapse. Biochimica et Biophysica Acta, 1779, 495–506.

    CAS  PubMed  Google Scholar 

  • Haynes, C. M., Caldwell, S., & Cooper, A. A. (2002). An HRD/DER-independent ER quality control mechanism involves Rsp5p-dependent ubiquitination and ER-Golgi transport. Journal of Cell Biology, 158, 91–101.

    Article  CAS  PubMed  Google Scholar 

  • Hyman, C., & Froehner, S. C. (1983). Degradation of acetylcholine receptors in muscle cells: Effect of leupeptin on turnover rate, intracellular pool sizes, and receptor properties. Journal of Cell Biology, 96, 1316–1324.

    Article  CAS  PubMed  Google Scholar 

  • Karan, G., Yang, Z., Howes, K., Zhao, Y., Chen, Y., Cameron, D. J., et al. (2005). Loss of ER retention and sequestration of the wild-type ELOVL4 by Stargardt disease dominant negative mutants. Molecular Vision, 11, 657–664.

    CAS  PubMed  Google Scholar 

  • Keller, S. H., Lindstrom, J., & Taylor, P. (1996). Involvement of the chaperone protein calnexin and the acetylcholine receptor beta-subunit in the assembly and cell surface expression of the receptor. Journal of Biological Chemistry, 271, 22871–22877.

    Article  CAS  PubMed  Google Scholar 

  • Keller, S. H., Lindstrom, J., Ellisman, M., & Taylor, P. (2001). Adjacent basic amino acid residues recognized by the COP I complex and ubiquitination govern endoplasmic reticulum to cell surface trafficking of the nicotinic acetylcholine receptor alpha-Subunit. Journal of Biological Chemistry, 276, 18384–18391.

    Article  CAS  PubMed  Google Scholar 

  • Khanna, R., Lee, E. J., & Papazian, D. M. (2004). Transient calnexin interaction confers long-term stability on folded K+ channel protein in the ER. Journal of Cell Science, 117, 2897–2908.

    Article  CAS  PubMed  Google Scholar 

  • Kisselev, A. F., & Goldberg, A. L. (2005). Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. Methods in Enzymology, 398, 364–378.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., et al. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 441, 880–884.

    Article  CAS  PubMed  Google Scholar 

  • Koulen, P., Cai, Y., Geng, L., Maeda, Y., Nishimura, S., Witzgall, R., et al. (2002). Polycystin-2 is an intracellular calcium release channel. Nature Cell Biology, 4, 191–197.

    Article  CAS  PubMed  Google Scholar 

  • Kumari, S., Borroni, V., Chaudhry, A., Chanda, B., Massol, R., Mayor, S., et al. (2008). Nicotinic acetylcholine receptor is internalized via a Rac-dependent, dynamin-independent endocytic pathway. Journal of Cell Biology, 181, 1179–1193.

    Article  CAS  PubMed  Google Scholar 

  • Le Novere, N., Corringer, P. J., & Changeux, J. P. (2002). The diversity of subunit composition in nAChRs: Evolutionary origins, physiologic and pharmacologic consequences. Journal of Neurobiology, 53, 447–456.

    Article  PubMed  Google Scholar 

  • Lee, S. H., Simonetta, A., & Sheng, M. (2004). Subunit rules governing the sorting of internalized AMPA receptors in hippocampal neurons. Neuron, 43, 221–236.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Zhang, Y., Hu, Y., Chang, M., Liu, T., Wang, D., et al. (2008). Chaperone proteins identified from synthetic proteasome inhibitor-induced inclusions in PC12 cells by proteomic analysis. Acta Biochim Biophys Sin (Shanghai), 40, 406–418.

    Article  CAS  Google Scholar 

  • Lu, Z., Je, H. S., Young, P., Gross, J., Lu, B., & Feng, G. (2007). Regulation of synaptic growth and maturation by a synapse-associated E3 ubiquitin ligase at the neuromuscular junction. Journal of Cell Biology, 177, 1077–1089.

    Article  CAS  PubMed  Google Scholar 

  • Merlie, J. P., & Lindstrom, J. (1983). Assembly in vivo of mouse muscle acetylcholine receptor: Identification of an alpha subunit species that may be an assembly intermediate. Cell, 34, 747–757.

    Article  CAS  PubMed  Google Scholar 

  • Meusser, B., Hirsch, C., Jarosch, E., & Sommer, T. (2005). ERAD: The long road to destruction. Nature Cell Biology, 7, 766–772.

    Article  CAS  PubMed  Google Scholar 

  • Mimnaugh, E. G., Bonvini, P., & Neckers, L. (1999). The measurement of ubiquitin and ubiquitinated proteins. Electrophoresis, 20, 418–428.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, N., Rabouille, C., Watson, R., Nilsson, T., Hui, N., Slusarewicz, P., et al. (1995). Characterization of a cis-Golgi matrix protein, GM130. Journal of Cell Biology, 131, 1715–1726.

    Article  CAS  PubMed  Google Scholar 

  • Patrick, G. N., Bingol, B., Weld, H. A., & Schuman, E. M. (2003). Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs. Current Biology, 13, 2073–2081.

    Article  CAS  PubMed  Google Scholar 

  • Paulson, H. L., Ross, A. F., Green, W. N., & Claudio, T. (1991). Analysis of early events in acetylcholine receptor assembly. Journal of Cell Biology, 113, 1371–1384.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, W. D., Vladeta, D., Han, H., & Noakes, P. G. (1997). Rapsyn and agrin slow the metabolic degradation of the acetylcholine receptor. Molecular and Cellular Neurosciences, 10, 16–26.

    Article  CAS  PubMed  Google Scholar 

  • Pizzirusso, M., & Chang, A. (2004). Ubiquitin-mediated targeting of a mutant plasma membrane ATPase, Pma1–7, to the endosomal/vacuolar system in yeast. Molecular Biology of the Cell, 15, 2401–2409.

    Article  CAS  PubMed  Google Scholar 

  • Rezvani, K., Teng, Y., Shim, D., & De Biasi, M. (2007). Nicotine regulates multiple synaptic proteins by inhibiting proteasomal activity. Journal of Neuroscience, 27, 10508–10519.

    Article  CAS  PubMed  Google Scholar 

  • Rezvani, K., Teng, Y., Pan, Y., Dani, J., Lindstrom, J., García Gras, E. A., et al. (2009). UBXD4, a UBX containing protein, regulates the cell surface number and the subunit stability of alpha 3-containing nicotinic acetylcholine receptors. Journal of Neuroscience, 29(21), 6883–6896.

    Article  CAS  PubMed  Google Scholar 

  • Rock, K. L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., et al. (1994). Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell, 78, 761–771.

    Article  CAS  PubMed  Google Scholar 

  • Smith, M. M., Lindstrom, J., & Merlie, J. P. (1987). Formation of the alpha-bungarotoxin binding site and assembly of the nicotinic acetylcholine receptor subunits occur in the endoplasmic reticulum. Journal of Biological Chemistry, 262, 4367–4376.

    CAS  PubMed  Google Scholar 

  • Touster, O., Aronson, N. N. Jr., Dulaney, J. T., & Hendrickson, H. (1970). Isolation of rat liver plasma membranes. Use of nucleotide pyrophosphatase and phosphodiesterase I as marker enzymes. Journal of Cell Biology, 47, 604–618.

    Article  CAS  PubMed  Google Scholar 

  • Vembar, S. S., & Brodsky, J. L. (2008). One step at a time: Endoplasmic reticulum-associated degradation. Nature Reviews. Molecular Cell Biology, 9, 944–957.

    Article  CAS  PubMed  Google Scholar 

  • Wanamaker, C. P., & Green, W. N. (2007). ER chaperones stabilize nicotinic receptor subunits and regulate receptor assembly. Journal of Biological Chemistry, 282(43), 31113–31123.

    Article  CAS  PubMed  Google Scholar 

  • Wanamaker, C. P., Christianson, J. C., & Green, W. N. (2003). Regulation of nicotinic acetylcholine receptor assembly. Annals of the New York Academy of Sciences, 998, 66–80.

    Article  CAS  PubMed  Google Scholar 

  • Wang, F., Nelson, M. E., Kuryatov, A., Olale, F., Cooper, J., Keyser, K., et al. (1998). Chronic nicotine treatment up-regulates human alpha3 beta2 but not alpha3 beta4 acetylcholine receptors stably transfected in human embryonic kidney cells. Journal of Biological Chemistry, 273, 28721–28732.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J. M., Zhang, L., Yao, Y., Viroonchatapan, N., Rothe, E., & Wang, Z. Z. (2002). A transmembrane motif governs the surface trafficking of nicotinic acetylcholine receptors. Nature Neuroscience, 5, 963–970.

    Article  CAS  PubMed  Google Scholar 

  • Wibo, M., Thines-Sempoux, D., Amar-Costesec, A., Beaufay, H., & Godelaine, D. (1981). Analytical study of microsomes and isolated subcellular membranes from rat liver VIII. Subfractionation of preparations enriched with plasma membranes, outer mitochondrial membranes, or Golgi complex membranes. Journal of Cell Biology, 89, 456–474.

    Article  CAS  PubMed  Google Scholar 

  • Yan, F. F., Lin, C. W., Cartier, E. A., & Shyng, S. L. (2005). Role of ubiquitin-proteasome degradation pathway in biogenesis efficiency of {beta}-cell ATP-sensitive potassium channels. American Journal of Physiology. Cell Physiology, 289, C1351–C1359.

    Article  CAS  PubMed  Google Scholar 

  • Yi, J. J., & Ehlers, M. D. (2005). Ubiquitin and protein turnover in synapse function. Neuron, 47, 629–632.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute on Drug Abuse (DA017173 & DA024385) to MDB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariella De Biasi.

Additional information

Proceedings of the XIII International Symposium on Cholinergic Mechanisms

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezvani, K., Teng, Y. & De Biasi, M. The Ubiquitin–Proteasome System Regulates the Stability of Neuronal Nicotinic Acetylcholine Receptors. J Mol Neurosci 40, 177–184 (2010). https://doi.org/10.1007/s12031-009-9272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-009-9272-x

Keywords

Navigation