Skip to main content

Advertisement

Log in

Spike Train Analysis Toolkit: Enabling Wider Application of Information-Theoretic Techniques to Neurophysiology

  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Conventional methods widely available for the analysis of spike trains and related neural data include various time- and frequency-domain analyses, such as peri-event and interspike interval histograms, spectral measures, and probability distributions. Information theoretic methods are increasingly recognized as significant tools for the analysis of spike train data. However, developing robust implementations of these methods can be time-consuming, and determining applicability to neural recordings can require expertise. In order to facilitate more widespread adoption of these informative methods by the neuroscience community, we have developed the Spike Train Analysis Toolkit. STAToolkit is a software package which implements, documents, and guides application of several information-theoretic spike train analysis techniques, thus minimizing the effort needed to adopt and use them. This implementation behaves like a typical Matlab toolbox, but the underlying computations are coded in C for portability, optimized for efficiency, and interfaced with Matlab via the MEX framework. STAToolkit runs on any of three major platforms: Windows, Mac OS, and Linux. The toolkit reads input from files with an easy-to-generate text-based, platform-independent format. STAToolkit, including full documentation and test cases, is freely available open source via http://neuroanalysis.org, maintained as a resource for the computational neuroscience and neuroinformatics communities. Use cases drawn from somatosensory and gustatory neurophysiology, and community use of STAToolkit, demonstrate its utility and scope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aronov, D. (2003). Fast algorithm for the metric-space analysis of simultaneous responses of multiple single neurons. Journal of Neuroscience Methods, 124, 175–179. doi:10.1016/S0165-0270(03)00006-2.

    Article  PubMed  Google Scholar 

  • Carlton, A. G. (1969). On the bias of information estimates. Psychological Bulletin, 71, 108–109. doi:10.1037/h0026857.

    Article  Google Scholar 

  • Chao, A., & Shen, T.-J. (2003). Nonparametric estimation of Shannon’s index of diversity when there are unseen species in a sample. Environmental and Ecological Statistics, 10, 429–443. doi:10.1023/A:1026096204727.

    Article  Google Scholar 

  • Di Lorenzo, P. M., & Victor, J. D. (2003). Taste response variability and temporal coding in the nucleus of the solitary tract of the rat. Journal of Neurophysiology, 90, 1418–1431.

    Article  PubMed  Google Scholar 

  • Di Lorenzo, P. M., & Victor, J. D. (2007). Neural coding mechanisms for flow rate in taste-responsive cells in the nucleus of the solitary tract of the rat. Journal of Neurophysiology, 97, 1857–1861. doi:10.1152/jn.00910.2006.

    Article  PubMed  Google Scholar 

  • Dorval, A. D. (2008). Probability distributions of the logarithm of inter-spike intervals yield accurate entropy estimates from small datasets. Journal of Neuroscience Methods, 173, 129–139. doi:10.1016/j.jneumeth.2008.05.013.

    Article  PubMed  Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York: Chapman & Hall.

    Google Scholar 

  • Gardner, D., Abato, M., Knuth, K. H., DeBellis, R., & Erde, S. M. (2001a). Dynamic publication model for neurophysiology databases. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356, 1229–1247. doi:10.1098/rstb.2001.0911.

    CAS  Google Scholar 

  • Gardner, D., Knuth, K. H., Abato, M., Erde, S. M., White, T., DeBellis, R., et al. (2001b). Common data model for neuroscience data and data model interchange. Journal of the American Medical Informatics Association, 8, 17–31.

    CAS  Google Scholar 

  • Gardner, D., Toga, A. W., Ascoli, G. A., Beatty, J., Brinkley, J. F., Dale, A. M., et al. (2003). Towards effective and rewarding data sharing. Neuroinformatics, 1, 289–295. doi:10.1385/NI:1:3:289.

    Article  PubMed  Google Scholar 

  • Gardner, D., Abato, M., Knuth, K. H., & Robert, A. (2005). Neuroinformatics for neurophysiology: The role, design, and use of databases. In S. H. Koslow & S. Subramaniam (Eds.), Databasing the brain: The role, design, and use of databases (pp. 47–67). New York: Wiley.

    Google Scholar 

  • Gardner, D., Chan, E., Goldberg, D. H., Jagdale, A. B., Robert, A., & Victor, J. D. (2007a). Neurodatabase.org and Neuroanalysis.org: Tools and resources for data discovery. (Abstract) Program No. 100.10. Washington, DC: Society for Neuroscience.

    Google Scholar 

  • Gardner, E. P., Babu, K. S., Reitzen, S. D., Ghosh, S., Brown, A. M., Chen, J., et al. (2007b). Neurophysiology of prehension: I. Posterior parietal cortex and object-oriented hand behaviors. Journal of Neurophysiology, 97, 387–406. doi:10.1152/jn.00558.2006.

    Article  Google Scholar 

  • Gardner, E. P., Babu, K. S., Ghosh, S., Sherwood, A., & Chen, J. (2007c). Neurophysiology of prehension: III. Representation of object features in posterior parietal cortex of the macaque monkey. Journal of Neurophysiology, 98, 3708–3730. doi:10.1152/jn.00609.2007.

    Article  Google Scholar 

  • Gardner, D., Akil, H., Ascoli, G. A., Bowden, D. M., Bug, W., Donohue, D. E., et al. (2008a). The neuroscience information framework: a data and knowledge environment for neuroscience. Neuroinformatics, 6(3), 149–160. doi:10.1007/s12021-008-9024-z.

    Article  Google Scholar 

  • Gardner, D., Goldberg, D. H., Grafstein, B., Robert, A., & Gardner, E. P. (2008b). Terminology for neuroscience data discovery: multi-tree syntax and investigator-derived semantics. Neuroinformatics, 6(3), 161–174. doi:10.1007/s12021-008-9029-7.

    Article  Google Scholar 

  • Goldberg, D. H., Victor, J. D., & Gardner, D. (2006a). Computational neuroinformatic toolkit: Information-theoretic analysis of spike trains. (Abstract) Biophysical Society Annual Meeting, 1244-Pos, Salt Lake City, UT.

  • Goldberg, D. H., Victor, J. D., Gardner, E. P., & Gardner, D. (2006b). Computational neuroinformatics: toward distributed neuroscience data discovery (Abstract) Computational Neuroscience Society Annual Meeting, Edinburgh, UK.

  • Goldberg, D. H., Gardner, E. P., Gardner, D., & Victor, J. D. (2006c). Metric space analysis of neuronal ensembles in parietal cortex during prehension (Abstract) Program No. 147.7. Washington, DC: Society for Neuroscience.

    Google Scholar 

  • Goldberg, D. H., Victor, J. D., & Gardner, D. (2006d). Neuroinformatic resources for the information theoretic analysis of spike trains. (Abstract) Dynamical Neuroscience Satellite Symposium at Society for Neuroscience, Atlanta.

  • Goldberg, D. H., Chan, E., Jagdale, A. B., Victor, J. D., & Gardner, D. (2007). Computational neuroinformatics: web-enabled tools for neuroscience data discovery. (Abstract) Biophysical Society Annual Meeting, 531-Pos, Baltimore, MD.

  • Hausser, J., & Strimmer, K. (2008). Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks. arXiv:0811.3579v2 [stat.ML] 31 Dec 2008

  • Huetz, C., Philibert, B., & Edeline, J.-M. (2009). A spike-timing code for discriminating conspecific vocalizations in the thalamocortical system of anesthetized and awake guinea pigs. The Journal of Neuroscience, 29(2), 334–350. doi:10.1523/JNEUROSCI.3269-08.2009.

    Article  PubMed  CAS  Google Scholar 

  • Ince, R. A. A., Petersen, R. S., Swan, D. C., & Panzeri, S. (2009). Python for information theoretic analysis of neural data. Frontiers in Neuroinformatics, . doi:10.3389/neuro.11.004.2009.

    PubMed  Google Scholar 

  • Kennedy, D. N. (2004). Barriers to the socialization of information. Neuroinformatics, 4, 367–368. doi:10.1385/NI:2:4:367.

    Article  Google Scholar 

  • Kennedy, D. N. (2006). Where’s the beef? Missing data in the information age. Neuroinformatics, 6, 271–274. doi:10.1385/NI:4:4:271.

    Article  Google Scholar 

  • Koslow, S. H., & Hirsch, M. D. (2004). Celebrating a decade of neuroscience databases. Looking to the future of high-throughput data analysis, data integration, and discovery neuroscience. Neuroinformatics, 4, 267–270. doi:10.1385/NI:2:3:267.

    Article  Google Scholar 

  • Lidierth, M. (2009). sigTOOL: a MATLAB-based environment for sharing laboratory-developed software to analyze biological signals. Journal of Neuroscience Methods, 178, 188–196. doi:10.1016/j.jneumeth.2008.11.004.

    Article  PubMed  Google Scholar 

  • Ma, S. (1981). Calculation of entropy from data of motion. Journal of Statistical Physics, 26, 221–240. doi:10.1007/BF01013169.

    Article  Google Scholar 

  • Miller, G. A. (1955). Note on the bias on information estimates. Information Theory in Psychology Problems and Methods, II-B, 95–100.

    Google Scholar 

  • Mitra, P., & Bokil, H. (2008). Observed Brain Dynamics. New York: Oxford University Press.

    Google Scholar 

  • Nemenman, I., Shafee, F., & Bialek, W. (2002). Entropy and inference, revisited. In T. G. Dietterich, S. Becker & Z. Ghahramani (Eds.), Advances in neural information processing systems 14: Proceedings of the 2002 Conference (pp. 471–478). Cambridge, MA: MIT.

    Google Scholar 

  • Paninski, L. (2003). Estimation of entropy and mutual information. Neural Computation, 15, 1191–1253. doi:10.1162/089976603321780272.

    Article  Google Scholar 

  • Panzeri, S., Senatore, R., Montemurro, M. A., & Petersen, R. S. (2007). Correcting for the sampling bias problem in spike train information measures. Journal of Neurophysiology, 98, 1064–1072. doi:10.1152/jn.00559.2007.

    Article  PubMed  Google Scholar 

  • Quian Quiroga, R., & Panzeri, S. (2009). Extracting information from neuronal populations: information theory and decoding approaches. Nature Reviews. Neuroscience, 10(3), 173–185. doi:10.1038/nrn2578.

    Article  PubMed  CAS  Google Scholar 

  • Reich, D. S., Mechler, F., & Victor, J. D. (2001a). Formal and attribute-specific information in primary visual cortex. Journal of Neurophysiology, 85, 305–318.

    PubMed  CAS  Google Scholar 

  • Reich, D. S., Mechler, F., & Victor, J. D. (2001b). Temporal coding of contrast inprimary visual cortex: when, what, and why. Journal of Neurophysiology, 85, 1039–1041.

    PubMed  CAS  Google Scholar 

  • Reinagel, P., & Reid, R. C. (2000). Temporal coding of visual information in the thalamus. The Journal of Neuroscience, 20, 5392–5400.

    PubMed  CAS  Google Scholar 

  • Roussin, A. T., Victor, J. D., Chen, J.-Y., & Di Lorenzo, P. M. (2008). Variability in responses and temporal coding of tastants of similar quality in the nucleus of the solitary tract of the rat. Journal of Neurophysiology, 99, 644–655. doi:10.1152/jn.00920.2007.

    Article  PubMed  Google Scholar 

  • Shannon, C. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423.

    Google Scholar 

  • Strong, S. P., Koberle, R., de Ruyter van Steveninck, R. R., & Bialek, W. (1998). Entropy and Information in Neural Spike Trains. Physical Review Letters, 80, 197–200. doi:10.1103/PhysRevLett.80.197.

    Article  CAS  Google Scholar 

  • Treves, A., & Panzeri, S. (1995). The upward bias in measures of information derived from limited data samples. Neural Computation, 7, 399–407. doi:10.1162/neco.1995.7.2.399.

    Article  Google Scholar 

  • Vaknin, R., Goldberg, D. H., Victor, J. D., Gardner, E. P., Debowy, D. J., Babu, K. S., et al. (2005). Metric space analysis of spike trains in parietal cortex during prehension. Society for Neuroscience Abstracts, 2005, 984.20.

    Google Scholar 

  • Victor, J. D. (2002). Binless strategies for estimation of information from neural data. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 66, 051903.

    Google Scholar 

  • Victor, J. D. (2005). Spike train metrics. Current Opinion in Neurobiology, 15, 585–592. doi:10.1016/j.conb.2005.08.002.

    Article  PubMed  CAS  Google Scholar 

  • Victor, J. D. (2006). Approaches to information-theoretic analysis of neural activity. Biological Theory, 1(3), 302–316. doi:10.1162/biot.2006.1.3.302.

    Article  PubMed  Google Scholar 

  • Victor, J. D., & Purpura, K. P. (1997). Metric-space analysis of spike trains: theory, algorithms and application. Network: Computation in Neural Systems, 8, 127–164. doi:10.1088/0954-898X/8/2/003.

    Article  Google Scholar 

  • Victor, J. D., Goldberg, D. H., & Gardner, D. (2007). Dynamic programming algorithms for comparing multineuronal spike trains via cost-based metrics and alignments. Journal of Neuroscience Methods, 161(2), 351–360. doi:10.1016/j.jneumeth.2006.11.001.

    Article  PubMed  Google Scholar 

  • Wolpert, D. H., & Wolf, D. R. (1995). Estimating functions of probability distributions from a finite set of samples. Physical Review E, 52, 6841–6854. (Erratum in Physical Rev. E (Norwalk, Conn.), 54, 6973.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The STAToolkit and related computational neuroscience resources are supported by the U.S. Human Brain Project/ Neuroinformatics program via MH068012 from NIMH, NINDS, NIA, NIBIB, and NSF to D. Gardner, with partial support via EY09314 from NEI to J.D. Victor. Parallel development of neurodatabase.org and related terminology, including BrainML are supported by Human Brain Project/ Neuroinformatics MH057153 from NIMH, with past support from NIMH and NINDS. Data from E.P. Gardner’s lab used in the STAToolkit tests and demonstrations reported here supported by NS011862 from NINDS and Human Brain Project/ Neuroinformatics NS044820 from NINDS, NIMH, and NIA, both to E.P. Gardner.

We thank the many developers of the information-theoretic and entropy measures we have implemented in the toolkit, and the many users of this software. In addition to those named elsewhere, the project has benefited from consultations with Sheila Nirenberg (Weill Cornell), Ron Elber and Ramin Zabih (Cornell), Simon Schultz (Imperial College London), Emery N. Brown and R. Clay Reid (Harvard Medical School), Pamela Reinagel (UCSD), Barry J. Richmond (NIMH), Partha Mitra (Cold Spring Harbor Labs), and A.B. Bonds (Vanderbilt). We are also indebted to Keith Purpura for demonstration datasets included with STAToolkit, as well as Eliza Chan, Ajit Jagdale, Adrian Robert, and Ronit Vaknin for many helpful discussions, contributions to, and testing of the software and its in-development extensions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Gardner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldberg, D.H., Victor, J.D., Gardner, E.P. et al. Spike Train Analysis Toolkit: Enabling Wider Application of Information-Theoretic Techniques to Neurophysiology. Neuroinform 7, 165–178 (2009). https://doi.org/10.1007/s12021-009-9049-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-009-9049-y

Keywords

Navigation