Skip to main content

Advertisement

Log in

Synaptic Depression and Aberrant Excitatory Network Activity in Alzheimer’s Disease: Two Faces of the Same Coin?

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases, including Alzheimer’s disease (AD), target specific and functionally connected neuronal networks, raising the possibility that neurodegeneration may spread through abnormal patterns of neural network activity. AD is associated with high levels of amyloid-β (Aβ) peptides in the brain, synaptic depression, aberrant excitatory neuronal activity, and cognitive decline. However, the relationships among these alterations and their underlying mechanisms are poorly understood. In experimental models of AD, high concentrations of pathogenic Aβ assemblies reduce glutamatergic transmission and enhance long-term depression at the synaptic level. At the network level, they cause dysrhythmias, including neuronal synchronization, epileptiform activity, seizures, and postictal suppression. Both synaptic depression and aberrant network synchronization likely interfere with activity-dependent synaptic regulation, which is critical for learning and memory. Abnormal patterns of neuronal activity across functionally connected brain regions may also trigger and perpetuate trans-synaptic mechanisms of neurodegeneration. It remains to be determined if synaptic depression and network dysrhythmias are mechanistically related, which of them is primary or secondary, and whether normalization of one will prevent the other as well as cognitive dysfunction in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bezprozvanny, I., & Mattson, M. P. (2008). Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends in Neurosciences, 31, 454–463.

    Article  CAS  PubMed  Google Scholar 

  • Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82, 239–259.

    Article  CAS  PubMed  Google Scholar 

  • Braak, H., Del Tredici, K., Rub, U., de Vos, R. A., Jansen Steur, E. N., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24, 197–211.

    Article  PubMed  Google Scholar 

  • Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.

    Article  PubMed  Google Scholar 

  • Buckner, R. L., Snyder, A. Z., Shannon, B. J., LaRossa, G., Sachs, R., Fotenos, A. F., et al. (2005). Molecular, structural, and functional characterization of Alzheimer’s disease: Evidence for a relationship between default activity, amyloid, and memory. Journal of Neuroscience, 25, 7709–7717.

    Article  CAS  PubMed  Google Scholar 

  • Busche, M. A., Eichhoff, G., Adelsberger, H., Abramowski, D., Wiederhold, K. H., Haass, C., et al. (2008). Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science, 321, 1686–1689.

    Article  CAS  PubMed  Google Scholar 

  • Chang, S., Ma, T. R., Miranda, R. D., Balestra, M. E., Mahley, R. W., & Huang, Y. (2005). Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 102, 18694–18699.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, P. F., White, G. L., Jones, M. W., Cooper-Blacketer, D., Marshall, V. J., Irizarry, M., et al. (1999). Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nature Neuroscience, 2, 271–276.

    Article  CAS  PubMed  Google Scholar 

  • Cho, D. H., Nakamura, T., Fang, J., Cieplak, P., Godzik, A., Gu, Z., et al. (2009). S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science, 324, 102–105.

    Article  CAS  PubMed  Google Scholar 

  • Cirrito, J. R., Kang, J. E., Lee, J., Stewart, F. R., Verges, D. K., Silverio, L. M., et al. (2008). Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron, 58, 42–51.

    Article  CAS  PubMed  Google Scholar 

  • Cirrito, J. R., Yamada, K. A., Finn, M. B., Sloviter, R. S., Bales, K. R., May, P. C., et al. (2005). Synaptic activity regulates interstitial fluid amyloid-b levels in vivo. Neuron, 48, 913–922.

    Article  CAS  PubMed  Google Scholar 

  • Cleary, J. P., Walsh, D. M., Hofmeister, J. J., Shankar, G. M., Kuskowski, M. A., Selkoe, D. J., et al. (2005). Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nature Neuroscience, 8, 79–84.

    Article  CAS  PubMed  Google Scholar 

  • Dineley, K. T., Westerman, M., Bui, D., Bell, K., Ashe, K. H., & Sweatt, J. D. (2001). b-Amyloid activates the mitogen-activated protein kinase cascade via hippocampal a7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer’s disease. Journal of Neuroscience, 21, 4125–4133.

    CAS  PubMed  Google Scholar 

  • Du, H., Guo, L., Fang, F., Chen, D., Sosunov, A. A., McKhann, G. M., et al. (2008). Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nature Medicine, 14, 1097–1105.

    Article  CAS  PubMed  Google Scholar 

  • Harris, M. E., Carney, J. M., Cole, P. S., Hensley, K., Howard, B. J., Martin, L., et al. (1995). b-Amyloid peptide-derived, oxygen-dependent free radicals inhibit glutamate uptake in cultured astrocytes: Implications for Alzheimer’s disease. Neuroreport, 6, 1875–1879.

    Article  CAS  PubMed  Google Scholar 

  • Hsia, A., Masliah, E., McConlogue, L., Yu, G., Tatsuno, G., Hu, K., et al. (1999). Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proceedings of the National Academy of Sciences of the United States of America, 96, 3228–3233.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh, H., Boehm, J., Sato, C., Iwatsubo, T., Tomita, T., Sisodia, S., et al. (2006). AMPAR removal underlies Aβ-induced synaptic depression and dendritic spine loss. Neuron, 52, 831–843.

    Article  CAS  PubMed  Google Scholar 

  • Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., et al. (2003). APP processing and synaptic function. Neuron, 37, 925–937.

    Article  CAS  PubMed  Google Scholar 

  • Keller, J. N., Pang, Z., Geddes, J. W., Begley, J. G., Germeyer, A., Waeg, G., et al. (1997). Impairment of glucose and glutamate transport, and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid b-peptide: Role of the lipid peroxidation product 4-hydroxynonenal. Journal of Neurochemistry, 69, 273–284.

    CAS  PubMed  Google Scholar 

  • Kotermanski, S. E., & Johnson, J. W. (2009). Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. Journal of Neuroscience, 29, 2774–2779.

    Article  CAS  PubMed  Google Scholar 

  • Lauren, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W., & Strittmatter, S. M. (2009). Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature, 457, 1128–1132.

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Hong, S., Shepardson, N. E., Walsh, D. M., Shankar, G. M., & Selkoe, D. (2009a). Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron, 62, 788–801.

    Article  CAS  PubMed  Google Scholar 

  • Li, C. Y., Poo, M. M., & Dan, Y. (2009b). Burst spiking of a single cortical neuron modifies global brain state. Science, 324, 643–646.

    Article  CAS  PubMed  Google Scholar 

  • Lipton, S. A. (2005). The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: low-affinity, uncompetitive antagonism. Current Alzheimer Research, 2, 155–165.

    Article  CAS  PubMed  Google Scholar 

  • Lustig, C., Snyder, A. Z., Bhakta, M., O’Brien, K. C., McAvoy, M., Raichle, M. E., et al. (2003). Functional deactivations: change with age and dementia of the Alzheimer type. Proceedings of the National Academy of Sciences of the United States of America, 100, 14504–14509.

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie, I. R., & Miller, L. A. (1994). Senile plaques in temporal lobe epilepsy. Acta Neuropathologica, 87, 504–510.

    Article  CAS  PubMed  Google Scholar 

  • Mark, R. J., Hensley, K., Butterfield, D. A., & Mattson, M. P. (1995). Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. Journal of Neuroscience, 15, 6239–6249.

    CAS  PubMed  Google Scholar 

  • Masliah, E., Alford, M., Mallory, M., Rockenstein, E., Moechars, D., & Van Leuven, F. (2000). Abnormal glutamate transport function in mutant amyloid precursor protein transgenic mice. Experimental Neurology, 163, 381–387.

    Article  CAS  PubMed  Google Scholar 

  • Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., & Rydel, R. E. (1992). b-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. Journal of Neuroscience, 12, 376–389.

    CAS  PubMed  Google Scholar 

  • Mattson, M. P., Gleichmann, M., & Cheng, A. (2008). Mitochondria in neuroplasticity and neurological disorders. Neuron, 60, 748–766.

    Article  CAS  PubMed  Google Scholar 

  • Meilandt, W. J., Yu, G.-Q., Chin, J., Roberson, E. D., Palop, J. J., Wu, T., et al. (2008). Enkephalin elevations contribute to neuronal and behavioral impairments in a transgenic mouse model of Alzheimer’s disease. Journal of Neuroscience, 28, 5007–5017.

    Article  CAS  PubMed  Google Scholar 

  • Minkeviciene, R., Rheims, S., Dobszay, M. B., Zilberter, M., Hartikainen, J., Fulop, L., et al. (2009). Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. Journal of Neuroscience, 29, 3453–3462.

    Article  CAS  PubMed  Google Scholar 

  • Mintun, M. A., Larossa, G. N., Sheline, Y. I., Dence, C. S., Lee, S. Y., Mach, R. H., et al. (2006). [11C]PIB in a nondemented population: Potential antecedent marker of Alzheimer disease. Neurology, 67, 446–452.

    Article  CAS  PubMed  Google Scholar 

  • Origlia, N., Righi, M., Capsoni, S., Cattaneo, A., Fang, F., Stern, D. M., et al. (2008). Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-beta-mediated cortical synaptic dysfunction. Journal of Neuroscience, 28, 3521–3530.

    Article  CAS  PubMed  Google Scholar 

  • Palop, J. J., Chin, J., Bien-Ly, N., Massaro, C., Yeung, B. Z., Yu, G.-Q., et al. (2005). Vulnerability of dentate granule cells to disruption of Arc expression in human amyloid precursor protein transgenic mice. Journal of Neuroscience, 25, 9686–9693.

    Article  CAS  PubMed  Google Scholar 

  • Palop, J. J., Chin, J., & Mucke, L. (2006). A network dysfunction perspective on neurodegenerative diseases. Nature, 443, 768–773.

    Article  CAS  PubMed  Google Scholar 

  • Palop, J., Chin, J., Roberson, E., Wang, J., Thwin, M., Bien-Ly, N., et al. (2007). Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron, 55, 697–711.

    Article  CAS  PubMed  Google Scholar 

  • Palop, J. J., Jones, B., Kekonius, L., Chin, J., Yu, G.-Q., Raber, J., et al. (2003). Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer’s disease-related cognitive deficits. Proceedings of the National Academy of Sciences of the United States of America, 100, 9572–9577.

    Article  CAS  PubMed  Google Scholar 

  • Palop, J. J., & Mucke, L. (2009). Epilepsy and cognitive impairments in Alzheimer’s disease. Archives of Neurology, 66, 435–440.

    Article  PubMed  Google Scholar 

  • Petrella, J. R., Prince, S. E., Wang, L., Hellegers, C., & Doraiswamy, P. M. (2007). Prognostic value of posteromedial cortex deactivation in mild cognitive impairment. PLoS One, 2, e1104.

    Article  PubMed  Google Scholar 

  • Pihlajamaki, M., DePeau, K. M., Blacker, D., & Sperling, R. A. (2008). Impaired medial temporal repetition suppression is related to failure of parietal deactivation in Alzheimer disease. American Journal of Geriatric Psychiatry, 16, 283–292.

    Article  PubMed  Google Scholar 

  • Porsteinsson, A. P., Grossberg, G. T., Mintzer, J., & Olin, J. T. (2008). Memantine treatment in patients with mild to moderate Alzheimer’s disease already receiving a cholinesterase inhibitor: a randomized, double-blind, placebo-controlled trial. Current Alzheimer Research, 5, 83–89.

    Article  CAS  PubMed  Google Scholar 

  • Roberson, E. D., Scearce-Levie, K., Palop, J. J., Yan, F., Cheng, I. H., Wu, T., et al. (2007). Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer’s disease mouse model. Science, 316, 750–754.

    Article  CAS  PubMed  Google Scholar 

  • Rothman, S. M., & Olney, J. W. (1995). Excitotoxicity and the NMDA receptor—still lethal after eight years. Trends in Neurosciences, 18, 57–58.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Mejia, R. O., Newman, J. W., Toh, S., Yu, G.-Q., Zhou, Y., Halabisky, B., et al. (2008). Phospholipase A2 reduction ameliorates cognitive deficits in mouse model of Alzheimer’s disease. Nature Neuroscience, 11, 1311–1318.

    Article  CAS  PubMed  Google Scholar 

  • Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62, 42–52.

    Article  CAS  PubMed  Google Scholar 

  • Shankar, G. M., Bloodgood, B. L., Townsend, M., Walsh, D. M., Selkoe, D. J., & Sabatini, B. L. (2007). Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. Journal of Neuroscience, 27, 2866–2875.

    Article  CAS  PubMed  Google Scholar 

  • Snyder, E. M., Nong, Y., Almeida, C. G., Paul, S., Moran, T., Choi, E. Y., et al. (2005). Regulation of NMDA receptor trafficking by amyloid-β. Nature Neuroscience, 8, 1051–1058.

    Article  CAS  PubMed  Google Scholar 

  • Sperling, R. A., Laviolette, P. S., O’Keefe, K., O’Brien, J., Rentz, D. M., Pihlajamaki, M., et al. (2009). Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron, 63, 178–188.

    Article  CAS  PubMed  Google Scholar 

  • Townsend, M., Shankar, G. M., Mehta, T., Walsh, D. M., & Selkoe, D. J. (2006). Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity: A potent role for trimers. Journal of Physiology, 572, 477–492.

    Article  CAS  PubMed  Google Scholar 

  • Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., & Nelson, S. B. (1998). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature, 391, 892–896.

    Article  CAS  PubMed  Google Scholar 

  • Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews. Neuroscience, 5, 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Vicario-Abejon, C., Owens, D., McKay, R., & Segal, M. (2002). Role of neurotrophins in central synapse formation and stabilization. Nature Reviews. Neuroscience, 3, 965–974.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., et al. (2002). Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535–539.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Su, B., Siedlak, S. L., Moreira, P. I., Fujioka, H., Wang, Y., et al. (2008). Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proceedings of the National Academy of Sciences of the United States of America, 105, 19318–19823.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, H. A., Saykin, A. J., Rabin, L. A., Santulli, R. B., Flashman, L. A., Guerin, S. J., et al. (2006). Increased brain activation during working memory in cognitively intact adults with the APOE epsilon4 allele. American Journal of Psychiatry, 163, 1603–1610.

    Article  PubMed  Google Scholar 

  • Wu, J., Anwyl, R., & Rowan, M. J. (1995). beta-Amyloid selectively augments NMDA receptor-mediated synaptic transmission in rat hippocampus. Neuroreport, 6, 2409–2413.

    Article  CAS  PubMed  Google Scholar 

  • Yoshiike, Y., Kayed, R., Milton, S. C., Takashima, A., & Glabe, C. G. (2007). Pore-forming proteins share structural and functional homology with amyloid oligomers. Neuromolecular Medicine, 9, 270–275.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Stephen D. Bechtel, Jr. Foundation Young Investigator Award to J.J.P. and by National Institutes of Health Grants AG022074 and NS041787 to L.M. We thank B. Halabisky and R. Sanchez-Mejia for helpful comments on the manuscript, G. Howard and S. Ordway for editorial review, and E. Juarez and M. Dela Cruz for administrative assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge J. Palop or Lennart Mucke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palop, J.J., Mucke, L. Synaptic Depression and Aberrant Excitatory Network Activity in Alzheimer’s Disease: Two Faces of the Same Coin?. Neuromol Med 12, 48–55 (2010). https://doi.org/10.1007/s12017-009-8097-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-009-8097-7

Keywords

Navigation