Skip to main content
Log in

Toward a Mechanistic Understanding of Epileptic Networks

  • Epilepsy (CW Bazil, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Focal epileptic seizures have long been considered to arise from a small susceptible brain area and spread through uninvolved regions. In the past decade, the idea that focal seizures instead arise from coordinated activity across large-scale epileptic networks has become widely accepted. Understanding the network model’s applicability is critical, due to its increasing influence on clinical research and surgical treatment paradigms. In this review, we examine the origins of the concept of epileptic networks as the nidus for recurring seizures. We summarize analytical and methodological elements of epileptic network studies and discuss findings from recent detailed electrophysiological investigations. Our review highlights the strengths and limitations of the epileptic network theory as a metaphor for the complex interactions that occur during seizures. We present lines of investigation that may usefully probe these interactions and thus serve to advance our understanding of the long-range effects of epileptiform activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance ••Of major importance

  1. Kramer MA, Cash SS. Epilepsy as a disorder of cortical network organization. Neuroscientist. 2012;18:360–72.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Feindel W, Leblanc R, de Almeida AN. Epilepsy surgery: historical highlights 1909-2009. Epilepsia. 2009;50 Suppl 3:131–51.

    Article  PubMed  Google Scholar 

  3. Penfield W, Jasper H. Epilepsy and the functional anatomy of the human brain. Boston: Little, Brown & Co; 1954.

  4. Tellez-Zenteno JF, Hernández Ronquillo L, Moien-Afshari F, Wiebe S. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res. 2010;89:310–8.

    Article  PubMed  Google Scholar 

  5. McGovern RA, Banks GP, McKhann GM. New techniques and progress in epilepsy surgery. Curr Neurol Neurosci Rep. Springer US; 2016;16:65.

  6. Kang JY, Wu C, Tracy J, Lorenzo M, Evans J, Nei M, et al. Laser interstitial thermal therapy for medically intractable mesial temporal lobe epilepsy. Epilepsia. 2016;57:325–34.

    Article  PubMed  Google Scholar 

  7. Bragin A, Wilson CL, Engel J. Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis. Epilepsia. Blackwell Publishing Ltd; 2000;41:S144–52.

  8. Jacobs J, LeVan P, Châtillon C-É, Olivier A, Dubeau F, Gotman J. High frequency oscillations in intracranial EEGs mark epileptogenicity rather than lesion type. Brain. Oxford University Press; 2009;132:1022–37.

  9. Modur PN, Vitaz TW, Zhang S. Seizure localization using broadband EEG: comparison of conventional frequency activity, high-frequency oscillations, and infraslow activity. J Clin Neurophysiol. 2012;29:309–19.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Weiss SA, Lemesiou A, Connors R, Banks GP, McKhann GM, Goodman RR, et al. Seizure localization using ictal phase-locked high gamma: a retrospective surgical outcome study. Neurology. Lippincott Williams & Wilkins; 2015;84:2320–8. Surgical outcome study providing support for the concept of the seizure core as a driver of ictal activity.

  11. Spencer S, Huh L. Outcomes of epilepsy surgery in adults and children. The Lancet Neurology. 2008;7:525–37.

    Article  PubMed  Google Scholar 

  12. Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia. 2002;43:219–27.

    Article  PubMed  Google Scholar 

  13. Markram H, Wang Y, Tsodyks M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci USA. 1998;95:5323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Trevelyan AJ, Sussillo D, Yuste R. Feedforward inhibition contributes to the control of epileptiform propagation speed. Journal of Neuroscience. 2007;27:3383–7.

    Article  CAS  PubMed  Google Scholar 

  15. Simler S, Hirsch E, Danober L, Motte J, Vergnes M, Marescaux C. C-fos expression after single and kindled audiogenic seizures in Wistar rats. Neurosci Lett. 1994;175:58–62.

    Article  CAS  PubMed  Google Scholar 

  16. Hamil NE, Cock HR, Walker MC. Acute down-regulation of adenosine A(1) receptor activity in status epilepticus. Epilepsia. 2012;53:177–88.

    Article  CAS  PubMed  Google Scholar 

  17. Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci. Nature Publishing Group; 2012;13:336–49.

  18. Sporns O, Betzel RF. Modular brain networks. Annu Rev Psychol. 2016;67:613–40.

    Article  PubMed  Google Scholar 

  19. Reijneveld JC, Ponten SC, Berendse HW, Stam CJ. The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol. 2007;118:2317–31.

    Article  PubMed  Google Scholar 

  20. Yaffe RB, Borger P, Megevand P, Groppe DM, Kramer MA, Chu CJ, et al. Physiology of functional and effective networks in epilepsy. Clin Neurophysiol. 2015;126:227–36.

    Article  PubMed  Google Scholar 

  21. Stefan H, Lopes da Silva FH. Epileptic neuronal networks: methods of identification and clinical relevance. Front Neurol. 2013;4:8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Palmigiano A, Pastor J, de Sola RG, Ortega GJ. Stability of synchronization clusters and seizurability in temporal lobe epilepsy. Chialvo DR, editor. PLoS ONE. Public Library of Science; 2012;7:e41799.

  23. Schindler KA, Bialonski S, Horstmann M-T, Elger CE, Lehnertz K. Evolving functional network properties and synchronizability during human epileptic seizures. Chaos. 2008;18:033119.

    Article  PubMed  Google Scholar 

  24. Burns SP, Santaniello S, Yaffe RB, Jouny CC, Crone NE, Bergey GK, et al. Network dynamics of the brain and influence of the epileptic seizure onset zone. Proc Natl Acad Sci USA. National Acad Sciences; 2014;111:E5321–30.

  25. Hao S, Subramanian S, Jordan A, Santaniello S, Yaffe R, Jouny CC, et al. Computing network-based features from intracranial EEG time series data: application to seizure focus localization. Conf Proc IEEE Eng Med Biol Soc IEEE. 2014;2014:5812–5.

    Google Scholar 

  26. Ramon C, Holmes MD. Spatiotemporal phase clusters and phase synchronization patterns derived from high density EEG and ECoG recordings. Curr Opin Neurobiol. 2015;31:127–32.

    Article  CAS  PubMed  Google Scholar 

  27. Pereda E, Quiroga RQ, Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Progress in Neurobiology. 2005;77:1–37.

    Article  PubMed  Google Scholar 

  28. Friston KJ. Functional and effective connectivity: a review. doi:10.1089/brain.2011.0008. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA; 2011.

  29. Pedersen M, Omidvarnia AH, Walz JM, Jackson GD. Increased segregation of brain networks in focal epilepsy: an fMRI graph theory finding. Neuroimage Clin. 2015;8:536–42.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bassett DS, Bullmore E. Small-world brain networks. The Neuroscientist. SAGE Publications; 2006;12:512–23.

  31. Kramer MA, Eden UT, Kolaczyk ED, Zepeda R, Eskandar EN, Cash SS. Coalescence and fragmentation of cortical networks during focal seizures. Journal of Neuroscience. 2010;30:10076–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith EH, Liou J-Y, Davis TS, Merricks EM, Kellis SS, Weiss SA, et al. The ictal wavefront is the spatiotemporal source of discharges during spontaneous human seizures. Nature Communications. 2016;7:11098. This article provides evidence for the ictal wavefront as the driver of seizure activity, and details a temporo-spatial structure of epileptiform discharges during seizures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eklund A, Nichols TE, Knutsson H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci USA. National Acad Sciences; 2016:201602413. This article reports the effect of standard assumptions on statistical analyses commonly used to describe network structure.

  34. Stark E, Abeles M. Applying resampling methods to neurophysiological data. J Neurosci Methods. 2005;145:133–44.

    Article  PubMed  Google Scholar 

  35. Ebersole JS. Magnetoencephalography/magnetic source imaging in the assessment of patients with epilepsy. Epilepsia. Blackwell Publishing Ltd; 1997;38:S1–S5.

  36. Ebersole JS. Ebersole: EEG and MEG dipole source modeling. In: Epilepsy: a comprehensive textbook. Philadelphia: Lippincott Williams and Wilkins; 1998.

    Google Scholar 

  37. Williams D. A study of thalamic and cortical rhythms in petit mal seizures. Brain. Oxford University Press; 1953;76:50–69.

  38. Marcus EM, Watson CW. Bilateral synchronous spike wave electrographic patterns in the cat: interaction of bilateral cortical foci in the intact, the bilateral cortical-callosal, and adiencephalic preparation. Arch Neurol. American Medical Association; 1966;14:601–10.

  39. Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K, et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nature Publishing Group. Nature Publishing Group; 2013;16:64–70. This article provides evidence that the sensory thalamic nucleus projecting to the seizure focus is a key participant in ictogenesis.

  40. Paz JT, Bryant AS, Peng K, Fenno L, Yizhar O, Frankel WN, et al. A new mode of corticothalamic transmission revealed in the Gria4(-/-) model of absence epilepsy. Nat Neurosci. 2011;14:1167–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Motelow JE, Li W, Zhan Q, Mishra AM, Sachdev RNS, Liu G, et al. Decreased subcortical cholinergic arousal in focal seizures. Neuron. 2015;85:561–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gelinas JN, Khodagholy D, Thesen T, Devinsky O, Buzsáki G. Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy. Nat Med. 2016;22(6):641–8.

  43. Trevelyan AJ, Schevon CA. How inhibition influences seizure propagation. Neuropharmacology. Elsevier Ltd; 2013;69:45–54. Review article describing the effects of surround inhibition on seizure spread, and implications for EEG interpretation.

  44. Schevon CA, Weiss SA, McKhann G, Goodman RR, Yuste R, Emerson RG, et al. Evidence of an inhibitory restraint of seizure activity in humans. Nature Communications. 2012;3:1060.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Prince DA. Inhibition in “epileptic” neurons. Exp Neurol. 1968;21:307–21.

    Article  CAS  PubMed  Google Scholar 

  46. Weiss SA, Banks GP, McKhann GM, Goodman RR, Emerson RG, Trevelyan AJ, et al. Ictal high frequency oscillations distinguish two types of seizure territories in humans. Brain. 2013;136:3796–808.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Emerson RG, Turner CA, Pedley TA, Walczak TS, Forgione M. Propagation patterns of temporal spikes. Electroencephalography and Clinical Neurophysiology. 1995;94:338–48.

    Article  CAS  PubMed  Google Scholar 

  48. Alarcon G, Garcia Seoane JJ, Binnie CD, Martin Miguel MC, Juler J, Polkey CE, et al. Origin and propagation of interictal discharges in the acute electrocorticogram. Implications for pathophysiology and surgical treatment of temporal lobe epilepsy. Brain. 1997;120(Pt 12):2259–82.

    Article  PubMed  Google Scholar 

  49. González-Ramírez LR, Ahmed OJ, Cash SS, Wayne CE, Kramer MA. A biologically constrained, mathematical model of cortical wave propagation preceding seizure termination. Honey CJ, editor. PLoS Comput Biol. Public Library of Science; 2015;11:e1004065.

  50. Franaszczuk PJ, Bergey GK. Application of the directed transfer function method to mesial and lateral onset temporal lobe seizures. Brain Topogr. Kluwer Academic Publishers-Plenum Publishers; 1998;11:13–21.

  51. Wilke C, Drongelen WV, Kohrman M, He B. Identification of epileptogenic foci from causal analysis of ECoG interictal spike activity. Clinical Neurophysiology. 2009;120:1449–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Epstein CM, Adhikari BM, Gross R, Willie J, Dhamala M. Application of high‐frequency Granger causality to analysis of epileptic seizures and surgical decision making. Epilepsia. 2014;55:2038–47. Analysis of directional spread patterns in seizures, and discussion of clinical implications.

    Article  PubMed  Google Scholar 

  53. Bragin A, Claeys P, Vonck K, Van Roost D, Wilson C, Boon P, et al. Analysis of initial slow waves (ISWs) at the seizure onset in patients with drug resistant temporal lobe epilepsy. Epilepsia. Blackwell Publishing Inc; 2007;48:1883–94.

  54. Feldt Muldoon S, Soltesz I, Cossart R. Spatially clustered neuronal assemblies comprise the microstructure of synchrony in chronically epileptic networks. Proc Natl Acad Sci USA. National Acad Sciences; 2013;110:3567–72.

  55. Morgan RJ, Soltesz I. Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci USA. National Acad Sciences; 2008;105:6179–84.

  56. Trevelyan AJ, Sussillo D, Watson BO, Yuste R. Modular propagation of epileptiform activity: evidence for an inhibitory veto in neocortex. Journal of Neuroscience. 2006;26:12447–55.

    Article  CAS  PubMed  Google Scholar 

  57. Magiorkinis E, Diamantis A, Sidiropoulou K. Hallmarks in the history of epilepsy: from antiquity till the twentieth century. 2011.

    Google Scholar 

  58. Trevelyan AJ, Baldeweg T, van Drongelen W, Yuste R, Whittington M. The source of after discharge activity in neocortical tonic-clonic epilepsy. Journal of Neuroscience. 2007;27:13513–9.

    Article  CAS  PubMed  Google Scholar 

  59. Katzner S, Nauhaus I, Benucci A, Bonin V, Ringach DL, Carandini M. Local origin of field potentials in visual cortex. Neuron. 2009;61:35–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fauser S, Sisodiya SM, Martinian L, Thom M, Gumbinger C, Huppertz H-J, et al. Multi-focal occurrence of cortical dysplasia in epilepsy patients. Brain. 2009;132(Pt 8):2079–90.

  61. Afra P, Jouny CC, Bergey GK. Termination patterns of complex partial seizures: an intracranial EEG study. Seizure. 2015;32:9–15.

    Article  PubMed  Google Scholar 

  62. Blumenfeld H. What is a seizure network? Long-range network consequences of focal seizures. Adv Exp Med Biol. Springer Netherlands; 2014;813:63–70.

  63. Norden AD, Blumenfeld H. The role of subcortical structures in human epilepsy. Epilepsy Behav. 2002;3:219–31.

    Article  PubMed  Google Scholar 

  64. Motelow JE, Zhan Q, Mishra AM, et al. Decreased subcortical cholinergic arousal in focal seizures. Neuron. 2015;85(3):561–72. Neuroimaging and rodent electrophysiology study of seizure-induced inhibition of the subcortical arousal system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Paz JT, Huguenard JR. Microcircuits and their interactions in epilepsy: is the focus out of focus? Nature Publishing Group. Nature Publishing Group; 2015;18:351–9.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine A. Schevon.

Ethics declarations

Conflict of Interest

Elliot H. Smith declares that he has no conflict of interest.

Catherine A. Schevon reports a grant from NIH/NINDS (R01 NS084142).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Epilepsy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, E.H., Schevon, C.A. Toward a Mechanistic Understanding of Epileptic Networks. Curr Neurol Neurosci Rep 16, 97 (2016). https://doi.org/10.1007/s11910-016-0701-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-016-0701-2

Keywords

Navigation