Skip to main content

Advertisement

Log in

Understanding variability in the BOLD signal and why it matters for aging

  • SI: Genetic Neuroimaging in Aging and Age-Related Diseases
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Recent work in neuroscience supports the idea that variability in brain function is necessary for optimal brain responsivity to a changing environment. In this review, we discuss a series of functional magnetic resonance imaging (fMRI) studies in younger and older adults to assess age-related differences in variability of the fMRI signal. This work shows that moment-to-moment brain signal variability represents an important “signal” within what is typically considered measurement-related “noise” in fMRI. This accumulation of evidence suggests that moving beyond the mean will provide a complementary window into aging-related neural processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. We also found a similar pattern of relations between positive signal variability and cognitive performance when we analyzed the two age groups separately.

References

  • Aguirre, G. K., Zarahn, E., & D’Esposito, M. (1998). The variability of human, BOLD hemodynamic responses. NeuroImage, 8(4), 360–369.

    Article  CAS  PubMed  Google Scholar 

  • Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E., et al. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56(5), 924–935.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Backman, L., Nyberg, L., Lindenberger, U., Li, S. C., & Farde, L. (2006). The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neuroscience and Biobehavioral Reviews, 30(6), 791–807.

    Article  PubMed  Google Scholar 

  • Bandettini, P. A. (2012). Functional MRI: a confluence of fortunate circumstances. NeuroImage, 61(2), A3–A11.

    Article  Google Scholar 

  • Beck, J. M., Ma, W. J., Kiani, R., Hanks, T., Churchland, A. K., Roitman, J., et al. (2008). Probabilistic population codes for Bayesian decision making. Neuron, 60(6), 1142–1152.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Birn, R. M. (2012). The role of physiological noise in resting-state functional connectivity. NeuroImage, 62(2), 864–870.

    Article  PubMed  Google Scholar 

  • Cremer, R., & Zeef, E. J. (1987). What kind of noise increases with age? Journal of Gerontology, 42, 515–518.

    Article  CAS  PubMed  Google Scholar 

  • Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature reviews. Neuroscience, 12(1), 43–56.

    Google Scholar 

  • Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O., & Kotter, R. (2009). Key role of coupling, delay, and noise in resting brain fluctuations. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10302–10307.

    Google Scholar 

  • D’Esposito, M., Deouell, L. Y., & Gazzaley, A. (2003). Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nature Reviews Neuroscience, 4(11), 863–872.

    Article  PubMed  Google Scholar 

  • Faisal, A. A., Selen, L. P., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9(4), 292–303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Science U S A, 102(27), 9673–9678.

    Article  CAS  Google Scholar 

  • Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L. (2010). Blood oxygen level-dependent signal variability is more than just noise. Journal of Neuroscience, 30, 4914–4921.

    Article  CAS  PubMed  Google Scholar 

  • Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L. (2011). The importance of being variable. Journal of Neuroscience, 31, 4496–4503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L. (2013a). The modulation of BOLD variability between cognitive states varies by age and processing speed. Cerebral Cortex, 23(3), 684–693.

    Article  PubMed  Google Scholar 

  • Garrett, D. D., McIntosh, A. R., & Grady, C. L. (2013b). Brain signal variability is parametrically modifiable. Cerebral Cortex. doi:10.1093/cercor/bht150.

    PubMed Central  Google Scholar 

  • Garrett, D. D., Samanez-Larkin, G. R., MacDonald, S. W. S., McIntosh, A. R., & Grady, C. L. (2013c). Moment-to-moment brain variability: a next frontier in human brain mapping? Neuroscience and Biobehavioral Reviews, 37(4), 610–624.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ghosh, A., Rho, Y., McIntosh, A. R., Kotter, R., & Jirsa, V. K. (2008). Noise during rest enables the exploration of the brain's dynamic repertoire. PLoS computational biology, 4(10), e1000196.

  • Grady, C. L., Protzner, A. B., Kovacevic, N., Strother, S. C., Afshin-Pour, B., Wojtowicz, M., et al. (2010). A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cerebral Cortex, 20(6), 1432–1447.

    Article  PubMed Central  PubMed  Google Scholar 

  • Handwerker, D. A., Gazzaley, A., Inglis, B. A., & D’Esposito, M. (2007). Reducing vascular variability of fMRI data across aging populations using a breathholding task. Human Brain Mapping, 28, 846–859.

    Article  PubMed  Google Scholar 

  • He, B. J. (2011). Scale-free properties of the functional magnetic resonance imaging signal during rest and task. Journal of Neuroscience, 31(39), 13786–13795.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huettel, S. A., Singerman, J. D., & McCarthy, G. (2001). The effects of aging upon the hemodynamic response measured by functional MRI. Neuro Image, 13(1), 161–175.

    CAS  PubMed  Google Scholar 

  • Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging. Sunderland: Sinauer Associates.

    Google Scholar 

  • Jones, T. B., Bandettini, P. A., & Birn, R. M. (2008). Integration of motion correction and physiological noise regression in fMRI. Neuro Image, 42(2), 582–590.

    PubMed Central  PubMed  Google Scholar 

  • Kannurpatti, S. S., Motes, M. A., Rypma, B., & Biswal, B. B. (2010a). Increasing measurement accuracy of age-related BOLD signal change: minimizing vascular contributions by resting-state-fluctuation-of-amplitude scaling. Human Brain Mapping, 32(7), 1125–1140.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kannurpatti, S. S., Motes, M. A., Rypma, B., & Biswal, B. B. (2010b). Neural and vascular variability and the fMRI-BOLD response in normal aging. Magnetic Resonance Imaging, 28(4), 466–476.

    Article  PubMed Central  PubMed  Google Scholar 

  • Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719.

    Article  CAS  PubMed  Google Scholar 

  • Krishnan, A., Williams, L. J., McIntosh, A. R., & Abdi, H. (2011). Partial Least Squares (PLS) methods for neuroimaging: a tutorial and review. Neuro Image, 56(2), 455–475.

    PubMed  Google Scholar 

  • Li, S. C., Lindenberger, U., & Sikstrom, S. (2001). Aging cognition: from neuromodulation to representation. Trends in Cognitive Sciences, 5(11), 479–486.

    Article  PubMed  Google Scholar 

  • Liu, P., Hebrank, A. C., Rodrigue, K. M., Kennedy, K. M., Section, J., Park, D. C., et al. (2013). Age-related differences in memory-encoding fMRI responses after accounting for decline in vascular reactivity. Neuro Image, 78, 415–425.

    PubMed  Google Scholar 

  • Lustig, C., Snyder, A. Z., Bhakta, M., O’Brien, K. C., McAvoy, M., Raichle, M. E., et al. (2003). Functional deactivations: change with age and dementia of the Alzheimer type. Proceedings of the National Academy of Science U S A, 100(24), 14504–14509.

    Article  CAS  Google Scholar 

  • Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9(11), 1432–1438.

    Article  CAS  PubMed  Google Scholar 

  • MacDonald, S. W., Li, S. C., & Backman, L. (2009). Neural underpinnings of within-person variability in cognitive functioning. Psychology and Aging, 24(4), 792–808.

    Article  PubMed  Google Scholar 

  • MacDonald, S. W., Nyberg, L., & Backman, L. (2006). Intra-individual variability in behavior: links to brain structure, neurotransmission and neuronal activity. Trends in Neurosciences, 29(8), 474–480.

    Article  CAS  PubMed  Google Scholar 

  • McIntosh, A. R., Kovacevic, N., & Itier, R. J. (2008). Increased brain signal variability accompanies lower behavioral variability in development. PLoS Computational Biology, 4(7), e1000106.

    Article  PubMed Central  PubMed  Google Scholar 

  • McIntosh, A. R., Kovacevic, N., Lippe, S., Garrett, D. D., Grady, C. L., & Jirsa, V. (2010). The development of a noisy brain. Archives Italiennes de Biologie, 148(3), 323–337.

    CAS  PubMed  Google Scholar 

  • McIntosh, A. R., & Lobaugh, N. L. (2004). Partial least squates analysis of neuroimaging data: applications and advances. Neuro Image, 23(Supplement 1), S250–S263.

    PubMed  Google Scholar 

  • McIntosh, A. R., Vakorin, V., Kovacevic, N., Wang, H., Diaconescu, A., & Protzner, A. B. (2013). Spatiotemporal Dependency of Age-Related Changes in Brain Signal Variability. Cerebral Cortex.

  • McKiernan, K. A., Kaufman, J. N., Kucera-Thompson, J., & Binder, J. R. (2003). A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. Journal of Cognitive Neuroscience, 15(3), 394–408.

    Article  PubMed  Google Scholar 

  • Miller, M. B., Van Horn, J. D., Wolford, G. L., Handy, T. C., Valsangkar-Smyth, M., Inati, S., et al. (2002). Extensive individual differences in brain activations associated with episodic retrieval are reliable over time. Journal of Cognitive Neuroscience, 14(8), 1200–1214.

    Article  PubMed  Google Scholar 

  • Misic, B., Mills, T., Taylor, M. J., & McIntosh, A. R. (2010). Brain noise is task dependent and region specific. Journal of Neurophysiology, 104(5), 2667–2676.

    Article  PubMed  Google Scholar 

  • Misic, B., Vakorin, V. A., Paus, T., & McIntosh, A. R. (2011). Functional embedding predicts the variability of neural activity. Frontiers in Systems Neuroscience, 5, 90.

    Article  PubMed Central  PubMed  Google Scholar 

  • Neumann, J., Lohmann, G., Zysset, S., & von Cramon, D. Y. (2003). Within-subject variability of BOLD response dynamics. Neuro Image, 19(3), 784–796.

    PubMed  Google Scholar 

  • Park, D. C., Polk, T. A., Hebrank, A. C., & Jenkins, L. J. (2010). Age differences in default mode activity on easy and difficult spatial judgment tasks. Frontiers in Human Neuroscience, 3, 10.3389/neuro.3309.3075.2009

  • Persson, J., Lustig, C., Nelson, J. K., & Reuter-Lorenz, P. A. (2007). Age differences in deactivation: a link to cognitive control? Journal of Cognitive Neuroscience, 19(6), 1021–1032.

    Article  PubMed  Google Scholar 

  • Protzner, A. B., Kovacevic, N., Cohn, M., & McAndrews, M. P. (2013). Characterizing functional integrity: intraindividual brain signal variability predicts memory performance in patients with medial temporal lobe epilepsy. Journal of Neuroscience, 33(23), 9855–9865.

    Article  CAS  PubMed  Google Scholar 

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Science U S A, 98(2), 676–682.

    Article  CAS  Google Scholar 

  • Raja Beharelle, A., Kovacevic, N., McIntosh, A. R., & Levine, B. (2012). Brain signal variability relates to stability of behavior after recovery from diffuse brain injury. Neuro Image, 60(2), 1528–1537.

    PubMed  Google Scholar 

  • Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., et al. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral Cortex, 15(11), 1676–1689.

    Article  PubMed  Google Scholar 

  • Salthouse, T. A., & Lichty, W. (1985). Tests of the neural noise hypothesis of age-related cognitive change. Journal of Gerontology, 40, 443–450.

    Article  CAS  PubMed  Google Scholar 

  • Samanez-Larkin, G. R., Kuhnen, C. M., Yoo, D. J., & Knutson, B. (2010). Variability in nucleus accumbens activity mediates age-related suboptimal financial risk taking. Journal of Neuroscience, 30(4), 1426–1434.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shulman, G. L., Fiez, J., Corbetta, M., Buckner, R. L., Miezin, F., Raichle, M. E., et al. (1997). Common blood flow changes across visual tasks: decreases in cerebral cortex. Journal of Cognitive Neuroscience, 9(5), 648–663.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S. M., Beckmann, C. F., Ramnani, N., Woolrich, M. W., Bannister, P. R., Jenkinson, M., et al. (2005). Variability in fMRI: a re-examination of inter-session differences. Human Brain Mapping, 24(3), 248–257.

    Article  PubMed  Google Scholar 

  • Stein, R. B., Gossen, E. R., & Jones, K. E. (2005). Neuronal variability: noise or part of the signal? Nature Reviews Neuroscience, 6(5), 389–397.

    Article  CAS  PubMed  Google Scholar 

  • Toro, R., Fox, P. T., & Paus, T. (2008). Functional coactivation map of the human brain. Cerebral Cortex, 18, 2553–2559.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vakorin, V. A., Lippe, S., & McIntosh, A. R. (2011). Variability of brain signals processed locally transforms into higher connectivity with brain development. Journal of Neuroscience, 31(17), 6405–6413.

    Article  CAS  PubMed  Google Scholar 

  • Welford, A. T. (1981). Signal, noise, performance, and age. Human Factors, 23, 97–109.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Institutes of Health Research (grant #MOP14036). C.L.G. also is supported by the Canada Research Chairs program, the Ontario Research Fund, and the Canadian Foundation for Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl L. Grady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grady, C.L., Garrett, D.D. Understanding variability in the BOLD signal and why it matters for aging. Brain Imaging and Behavior 8, 274–283 (2014). https://doi.org/10.1007/s11682-013-9253-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-013-9253-0

Keyword

Navigation