Skip to main content
Log in

Genetic influences of resting state fMRI activity in language-related brain regions in healthy controls and schizophrenia patients: a pilot study

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Individuals with schizophrenia show a broad range of language impairments, similar to those observed in reading disability (RD). Genetic linkage and association studies of RD have identified a number of candidate RD-genes that are associated with neuronal migration. Some individuals with schizophrenia also show evidence of impaired cortical neuronal migration. We have previously linked RD-related genes with gray matter distributions in healthy controls and schizophrenia. The aim of the current study was to extend these structural findings and to examine links between putative RD-genes and functional connectivity of language-related regions in healthy controls (n = 27) and schizophrenia (n = 28). Parallel independent component analysis (parallel-ICA) was used to examine the relationship between language-related regions extracted from resting-state fMRI and 16 single nucleotide polymorphisms (SNPs) spanning 5 RD-related genes. Parallel-ICA identified four significant fMRI-SNP relationships. A Left Broca-Superior/Inferior Parietal network was related to two KIAA0319 SNPs in controls but not in schizophrenia. For both diagnostic groups, a Broca-Medial Parietal network was related to two DCDC2 SNPs, while a Left Wernicke-Fronto-Occipital network was related to two KIAA0319 SNPs. A Bilateral Wernicke-Fronto-Parietal network was related to one KIAA0319 SNP only in controls. Thus, RD-genes influence functional connectivity in language-related regions, but no RD-gene uniquely affected network function in schizophrenia as compared to controls. This is in contrast with our previous study where RD-genes affected gray matter distribution in some structural networks in schizophrenia but not in controls. Thus these RD-genes may exert a more important influence on structure rather than function of language-related networks in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. To avoid confusion, the independent components extracted from the initial ICA using GIFT will be referred to as ‘components’ and the independent components extracted from the parallel-ICA will be referred to as ‘subcomponents’.

References

  • Akbarian, S., Kim, J. J., Potkin, S. G., Hetrick, W. P., Bunney, W. E., Jr., & Jone, E. G. (1996). Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenia patients. Archives of General Psychiatry, 53, 425–436.

    Article  PubMed  CAS  Google Scholar 

  • Allen, P., Laroi, F., McGuire, P. K., & Aleman, A. (2008). The hallucinating brain: a review of structural and functional neuroimaging studies of hallucinations. Neuroscience & Biobehavioral Reviews, 32, 175–191.

    Article  Google Scholar 

  • Bell, A. J., & Sejnowski, T. J. (1995). An information maximisation approach to blind separation and blind deconvolution. Neural Computation, 7, 1004–1034.

    Article  Google Scholar 

  • Bishop D.V., North T., Donlan C. (1995) Genetic basis of specific language impairment: evidence from a twin study. Dev Med Child Neurol, 37(1):56–71.

    Google Scholar 

  • Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14, 140–151.

    Article  PubMed  CAS  Google Scholar 

  • Calhoun, V. D., Adali, T., & Pekar, J. J. (2004). A method for comparing group fMRI data using independent component analysis: application to visual, motor and visuomotor tasks. Magnetic Resonance Imaging, 22, 1181–1191.

    Article  PubMed  Google Scholar 

  • Calhoun, V. D., Liu, J., & Adali, T. (2009). A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage 45 S163–S172.

    Article  PubMed  Google Scholar 

  • DeFries, J. C., Fulker, D. W., & LaBuda, M. C. (1987). Evidence for a genetic aetiology inreading disability of twins. Nature, 329, 537–539.

    Google Scholar 

  • Demonet, J. F., Thierry, G., & Cardebat, D. (2005). Renewal of the neurophysiology of language: Functional neuroimaging. Physiology Review, 85, 49–95.

    Article  Google Scholar 

  • Deutsch, S. I., Burket, J. A., & Katz, E. (2010). Does subtle disturbance of neuronal migration contribute to schizophrenia and other neurodevelopmental disorders? Potential genetic mechanisms with possible treatment implications. European Journal of Neuropsychopharmacoogy, 20, 281–287.

    Article  CAS  Google Scholar 

  • Done, D. J., Leinoneen, E., Crow, T. J., & Sacker, A. (1998). Linguistic performance in children who develop schizophrenia in adult life. Evidence for normal syntactic ability. British Journal of Psychiatry, 172, 130–135.

    Article  CAS  Google Scholar 

  • Erhardt, E., Rachakonda, S., Bedrick, E., Adali, T., & Calhoun, V. (2010). Comparison of multi-subject ICA methods for analysis of fMRI data. Human Brain Mapping, [E Pub Ahead of Print]

  • First, M. B. (2002). The DSM series and experience with DSM-IV. Psychopathology, 35, 67–71.

    Article  PubMed  Google Scholar 

  • Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8, 700–711.

    Article  PubMed  CAS  Google Scholar 

  • Francks, C., Paracchini, S., Smith, S. D., Richardson, A. J., Scerri, T. S., et al. (2004). A 77-kb regionof chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. American Journal of Human Genetics, 75, 1046–1058.

    Article  PubMed  CAS  Google Scholar 

  • Freier, L., Roche, A., & Magin, J. F. (2002). What is the best similarity measure for motion correction in fMRI time series? IEEE Transactions in Medical Imaging, 21, 470–484.

    Article  Google Scholar 

  • Fuller, R., Nopoulos, P., Arndt, S., O’Leary, D., Ho, B. C., & Andreasen, N. C. (2002). Longitudinal assessment of premorbid cognitive functioning in patients with schizophrenia through examination of standardized scholastic test performance. American Journal of Psychiatry, 159, 1183–1189.

    Article  PubMed  Google Scholar 

  • Gabel, L. A., Gibson, C. J., Gruen, J. R., & LoTurco, J. J. (2010). Progress towards a cellular neurobiology of reading disability. Neurobiology of Disease, 38, 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Glahn, D. C., Laird, A. R., Ellison-Wright, I., Thelen, S., Robinson, J. L., Lancaster, J. L., Bullmore, E., & Fox, P. T. (2008). Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. Biological Psychiatry, 64, 774–781.

    Article  PubMed  Google Scholar 

  • Hampson, M., Peterson, B. S., Skudlarski, P., Gatenby, J. C., & Gore, J. C. (2002). Detection of functional connectivity using temporal correlations in MR images. Human Brain Mapping, 15, 247–262.

    Article  PubMed  Google Scholar 

  • Hannula-Jouppi, K., Kaminen-Ahola, N., Taipale, M., Eklund, R., Nopola-Hemmi, J., et al. (2005). The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLOS Genetics, 1, e50.

    Article  PubMed  Google Scholar 

  • Harold, D., Paracchini, S., Scerri, T., Dennis, M., Cope, N., Hill, G., Moskvina, V., Walter, J., Richardson, A. J., Owen, M. J., Stein, J. F., Green, E. D., O’Donovan, M. C., Williams, J., & Monaco A. P. (2006). Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia. Molecular Psychiatry, 11(12), 1085–10914.

    Google Scholar 

  • Hayes, R. L., & O’Grady, B. M. (2003). Do people with schizophrenia comprehend what they read? Schizophrenia Bulletin, 29, 499–507.

    Article  PubMed  Google Scholar 

  • Hosono, S., Faruqi, A. F., Dean, F. B., Du, Y., Sun, Z., Wu, X., Du, J., Kingsmore, S. F., Egholm, M., & Lasken, R. S. (2003). Unbiased whole-genome amplification directly from clinical samples. Genome Research, 13, 954–964.

    Article  PubMed  CAS  Google Scholar 

  • Jafri, M. J., Pearlson, G. D., Stevens, M., & Calhoun, V. D. (2008). A method of functional network connectivity among spatially independent resting state components in schizophrenia. Neuroimage, 39, 1666–1681.

    Article  PubMed  Google Scholar 

  • Jagannathan, K., Calhoun, V. D., Gelernter, J., Stevens, M. C., Liu, J., Bolognani, F., Windemuth, A., Ruano, G., Assaf, M., & Pearlson, G. D. (2010). Genetic associations of brain structural networks in schizophrenia: a preliminary study. Biological Psychiatry, 68, 657–666.

    Article  PubMed  CAS  Google Scholar 

  • Jamadar, S., Powers, N., Meda, S., Gelernter, J., Gruen, J., & Pearlson, G. (2011). Genetic influence of cortical gray matter in language-related regions in healthy controls and schizophrenia. Schizophrenia Research, 129, 141–148.

    Article  PubMed  CAS  Google Scholar 

  • Koyama, M. S., Kelly, C., Shehzad, Z., Penesetti, D., Castellanos, F. X., & Milham, M. P. (2010). Reading networks at rest. Cerebral Cortex, 20, 2549–2559.

    Article  PubMed  Google Scholar 

  • Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monoco, A. P. (2001). A forkhead domain gene is mutated in a severe speech and language disorder. Nature, 413, 519–523.

    Google Scholar 

  • Leonard, C. M., Eckert, M. A., Lombardino, L. J., Oakland, T., Kranzler, J., Mohr, C. M., et al. (2002). Anatomical risk factors for phonological dyslexia. Cerebral Cortex, 11, 148–157.

    Article  Google Scholar 

  • Li, X., Branch, C. A., & DeLisi, L. E. (2009). Language pathway abnormalities in schizophrenia: a review of fMRI and other imaging studies. Current Opinion Psychiatry, 22, 131–139.

    Article  CAS  Google Scholar 

  • Liu, J., Pearlson, G., Windemuth, A., Ruano, G., Perrone-Bizzero, N. I., & Calhoun, V. (2009). Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA. Human Brain Mapping, 30, 241–255.

    Article  PubMed  Google Scholar 

  • Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., & Bullmore, E. (2010). Functional connectivity and brain networks in schizophrenia. Journal of Neuroscience, 30, 9477–9487.

    PubMed  CAS  Google Scholar 

  • Maldjian, J. A., Laurienti, P. J., Burdette, J. B., & Kraft, R. A. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage, 19, 1233–1239.

    Article  PubMed  Google Scholar 

  • Meda, S. A., Gelernter, J., Gruen, J. R., Calhoun, V. D., Meng, H., Cope, N. A., & Pearlson, G. D. (2007). Polymorphism of DCDC2 reveals differences in cortical morphology of healthy individuals—a preliminary voxel based morphometry study. Brain Imaging Behav, 2, 21–26.

    Article  Google Scholar 

  • Meda, S. M., Gill, A., Stevens, M. C., Lorenzoni, R. P., Glahn, D. C., Calhoun, V. D., et al. (2012). Differences in resting-state functional magnetic resonance imaging functional network connectivity between schizophrenia and psychotic bipolar probands and their unaffected first-degree relatives. Biological Psychiatry, 71, 881–889.

    Article  PubMed  Google Scholar 

  • Meng, H., Smith, S. D., Hager, K., Held, M., Liu, J., et al. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Acadency of Science USA, 102, 17053–17058.

    Article  CAS  Google Scholar 

  • Paracchini, S., Scerri, T., & Monaco, A. P. (2007). The genetic lexicon of dyslexia. Annual Review Genomics Human Genetics, 8, 57–79.

    Article  CAS  Google Scholar 

  • Pearlson, G. D., & Calhoun, V. D. (2009). Convergent approaches for defining functional imaging endophenotypes in schizophrenia. Frontiers in Human Neuroscience, 3, 1–11.

    Article  Google Scholar 

  • Peschansky, V. J., Burbridge, T. J., Volz, A. J., Fiondella, C., Wissner-Gross, Z., Galaburda, A. M., LoTurco, J. J., & Rosen, G. D. (2010). The effect of variation in expression of the candidate dyslexia susceptibility gene homolog Kiaa0319 on neuronal migration and dendritic morphology in the rat. Cerebral Cortex, 20(4), 884–897.

    Article  Google Scholar 

  • Petrella, J. R., Sheldon, F. C., Prince, S. E., Calhoun, V. D., & Doraiswamy, P. M. (2011). Default mode connectivity in stable versus progressive mild cognitive impairment. Neurology, 76, 511–517.

    Article  PubMed  CAS  Google Scholar 

  • Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length. Annals of Statistics, 11, 416–431.

    Article  Google Scholar 

  • Rosen G.D., Bai J., Wang Y., Fiondella C.G., Threlkeld S.W., LoTurco J.J., Galaburda A.M. (2007) Disruption of neuronal migration by RNAi of Dyx1c1 results in neocortical and hippocampal malformations. Cereb Cortex, 17(11):2562–72.

    Google Scholar 

  • Scerri, T. S., Morris, A. P., Buckingham, L. L., Newbury, D. F., Miller, L. L., Monaco, A. P., Bishop D. V. M., Paracchini, S. (2011). DCDC2, KIAA0319 and CMIP are associated with reading-related traits. Biological Psychiatry,70, 237–245.

    Google Scholar 

  • Schumacher, J., Anthoni, H., Dahdouh, F., König, I. R., Hillmer, A. M., Kluck, N., Manthey, M., Plume, E., Warnke, A., Remschmidt, H., Hülsmann, J., Cichon, S., Lindgren, C. M., Propping, P., Zucchelli, M., Ziegler, A., Peyrard-Janvid, M., Schulte-Körne, G., Nöthen, M. M., & Kere, J. (2006). Strong Genetic Evidence of DCDC2 as a Susceptibility Gene for Dyslexia. American Journal of Human Genetics, 78(1), 52–62.

    Google Scholar 

  • Stein, J. L., Hua, X., Lee, S., Ho, A. J., Leow, A. D., Toga, A. W., et al. (2010). Voxelwise genome-wide association study (vGWAS). Neuroimage, 53, 1160–1174.

    Article  PubMed  CAS  Google Scholar 

  • Stranger, B., Stahl, E., Raj, T. (2011). Progress and promise of genome-wide association studies for human complex trait genetics. Genetics 187(2), 367–383.

    Google Scholar 

  • Strik, W., Dierks, T., Hubl, D., & Horn, H. (2008). Hallucinations, thought disorders, and the language domain in schizophrenia. Clinical EEG & Neuroscience, 39, 91–94.

    Article  CAS  Google Scholar 

  • Taipale, M., Kaminen, N., Nopola-Hemmi, J., Haltia, T., Myllyluoma, B., et al. (2003). A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proceedings of the National Academy Science USA, 100, 11553–11558.

    Article  CAS  Google Scholar 

  • Uddin, L. Q., & Menon, V. (2010). Resting state brain activity: Implications for systems neuroscience. Frontiers in Systems Neuroscience, 4, 1–2.

    Google Scholar 

  • Van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: a review on resting state fMRI functional connectivity. European Journal of Neuropsychopharmacology, 20, 519–534.

    Article  Google Scholar 

  • Vounou, M., Janousova, E., Wolz, R., Stein, J. L., Thompon, P. M., Rueckert, D., et al. (2012). Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer’s disease. Neuroimage, 60, 700–716.

    Article  PubMed  Google Scholar 

  • Vounou, M., Nichols, T., Montana, G. (2010). Discovering genetic associations with highdimensional neuroimaging phenotypes: a sparse reduced-rank regression approach. NeuroImage 53(3), 1147–1159.

    Google Scholar 

  • Wang, H., Nie, F., Huang, H., Kim, S., Nho, K., Risacher, S. L., et al. (2011). Identifying quantitative trait loci via group-sparse multi-task regression and feature selection: an imaging genetics study of the ADNI cohort. Bioinformatics, 18.

  • Zou, G. Y. (2007). Towards using confidence intervals to compare corelations. Psychology Methods, 12, 399–413.

    Article  Google Scholar 

Download references

Acknowledgements

None

Funding for this study was provided by NIMH Grants R37 MH43775, R01 MH074797, R01 MH077945, to G. Pearlson; funding for J.R. Gruen was provided by NINDS Grant R01 NS 43530.

Yale University has applied for a patent covering markers from and their application to reading disability, which has been licensed to a start-up company founded by J.R. Gruen. All other authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharna Jamadar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamadar, S., Powers, N.R., Meda, S.A. et al. Genetic influences of resting state fMRI activity in language-related brain regions in healthy controls and schizophrenia patients: a pilot study. Brain Imaging and Behavior 7, 15–27 (2013). https://doi.org/10.1007/s11682-012-9168-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-012-9168-1

Keywords

Navigation