Skip to main content
Log in

Silence of Synaptotagmin VII inhibits release of dense core vesicles in PC12 cells

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Synaptotagmin VII (Syt VII), which has a higher Ca2+ affinity and slower disassembly kinetics with lipid than Syt I and Syt IX, was regarded as being uninvolved in synaptic vesicle (SV) exocytosis but instead possibly as a calcium sensor for the slower kinetic phase of dense core vesicles (DCVs) release. By using high temporal resolution capacitance and amperometry measurements, it was demonstrated that the knockdown of endogenous Syt VII attenuated the fusion of DCV with the plasma membrane, reduced the amplitude of the exocytotic burst of the Ca2+-triggered DCV release without affecting the slope of the sustained component, and blocked the fusion pore expansion. This suggests that Syt VII is the Ca2+ sensor of DCV fusion machinery and is an essential factor for the establishment and maintenance of the pool size of releasable DCVs in PC12 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sudhof T C. The synaptic vesicle cycle. Annu Rev Neurosci, 2004, 27: 509–547 10.1146/annurev.neuro.26.041002.131412, 15217342, 1:CAS:528:DC%2BD2cXmslantLs%3D

    Article  PubMed  Google Scholar 

  2. Chapman E R. Synaptotagmin: A Ca2+ sensor that triggers exocytosis? Nat Rev Mol Cell Biol, 2002, 3: 498–508 10.1038/nrm855, 12094216, 1:CAS:528:DC%2BD38XkvFKmtbg%3D

    Article  PubMed  CAS  Google Scholar 

  3. Perin M S, Brose N, Jahn R, et al. Domain structure of synaptotagmin (p65). J Biol Chem, 1991, 266: 623–629 1985919, 1:CAS:528:DyaK3MXlslOrsQ%3D%3D

    PubMed  CAS  Google Scholar 

  4. Bai J, Chapman E R. The C2 domains of synaptotagmin—partners in exocytosis. Trends Biochem Sci, 2004, 29: 143–151 10.1016/j.tibs.2004.01.008, 15003272, 1:CAS:528:DC%2BD2cXhslCjt7g%3D

    Article  PubMed  CAS  Google Scholar 

  5. Yoshihara M, Littleton J T. Synaptotagmin I functions as a calcium sensor to synchronize neurotransmitter release. Neuron, 2002, 36: 897–908 10.1016/S0896-6273(02)01065-6, 12467593, 1:CAS:528:DC%2BD38XpslWls7g%3D

    Article  PubMed  CAS  Google Scholar 

  6. Geppert M, Goda Y, Hammer R E, et al. Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse. Cell, 1994, 79: 717–727 10.1016/0092-8674(94)90556-8, 7954835, 1:CAS:528:DyaK2MXit1Gks74%3D

    Article  PubMed  CAS  Google Scholar 

  7. Zhu D, Zhou W, Liang T, et al. Synaptotagmin I and IX function redundantly in controlling fusion pore of large dense core vesicles. Biochem Biophys Res Commun, 2007, 361: 922–927 10.1016/j.bbrc.2007.07.083, 17686463, 1:CAS:528:DC%2BD2sXpt1Kgt7s%3D

    Article  PubMed  CAS  Google Scholar 

  8. Lynch K L, Martin T F. Synaptotagmins I and IX function redundantly in regulated exocytosis but not endocytosis in PC12 cells. J Cell Sci, 2007, 120: 617–627 10.1242/jcs.03375, 17264148, 1:CAS:528:DC%2BD2sXjsF2rtb0%3D

    Article  PubMed  CAS  Google Scholar 

  9. Hui E, Bai J, Wang P, et al. Three distinct kinetic groupings of the synaptotagmin family: Candidate sensors for rapid and delayed exocytosis. Proc Natl Acad Sci USA, 2005, 102: 5210–5214 10.1073/pnas.0500941102, 15793006, 1:CAS:528:DC%2BD2MXjsFemtbk%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Sugita S, Shin O H, Han W, et al. Synaptotagmins form a hierarchy of exocytotic Ca2+ sensors with distinct Ca2+ affinities. EMBO J, 2002, 21: 270–280 10.1093/emboj/21.3.270, 11823420, 1:CAS:528:DC%2BD38XhsVSnsr0%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Wang P, Chicka M C, Bhalla A, et al. Synaptotagmin VII is targeted to secretory organelles in PC12 cells, where it functions as a high-affinity calcium sensor. Mol Cell Biol, 2005, 25: 8693–8702 10.1128/MCB.25.19.8693-8702.2005, 16166648, 1:CAS:528:DC%2BD2MXhtVKqsb7M

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Bai L, Zhu D, Zhou K, et al. Differential properties of GTP- and Ca2+-stimulated exocytosis from large dense core vesicles. Traffic, 2006, 7: 416–428 10.1111/j.1600-0854.2006.00394.x, 16536740, 1:CAS:528:DC%2BD28Xjs1OltLw%3D

    Article  PubMed  CAS  Google Scholar 

  13. Fukuda M, Kanno E, Satoh M, et al. Synaptotagmin VII is targeted to dense-core vesicles and regulates their Ca2+-dependent exocytosis in PC12 cells. J Biol Chem, 2004, 279: 52677–52684 10.1074/jbc.M409241200, 15456748, 1:CAS:528:DC%2BD2cXhtVCkurrF

    Article  PubMed  CAS  Google Scholar 

  14. Xiong X, Zhou K M, Wu Z X, et al. Silence of synaptotagmin I in INS-1 cells inhibits fast exocytosis and fast endocytosis. Biochem Biophys Res Commun, 2006, 347: 76–82 10.1016/j.bbrc.2006.06.045, 16808897, 1:CAS:528:DC%2BD28Xmslyrtbc%3D

    Article  PubMed  CAS  Google Scholar 

  15. Zhou Z, Misler S. Amperometric detection of quantal secretion from patch-clamped rat pancreatic β-cells. J Biol Chem, 1996, 271: 270–277 10.1074/jbc.271.1.270, 8550572, 1:CAS:528:DyaK28XktFGkuw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  16. Craxton M. Synaptotagmin gene content of the sequenced genomes. BMC Genomics, 2004, 5: 43 10.1186/1471-2164-5-43, 15238157, 1:CAS:528:DC%2BD2cXntF2rsLY%3D

    Article  PubMed Central  PubMed  Google Scholar 

  17. Lang T, Wacker I, Steyer J, et al. Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron, 1997, 18: 857–863 10.1016/S0896-6273(00)80325-6, 9208853, 1:CAS:528:DyaK2sXksVGmur4%3D

    Article  PubMed  CAS  Google Scholar 

  18. Fowler K T, Andrews N W, Huleatt J W. Expression and function of synaptotagmin VII in CTLs. J Immunol, 2007, 178: 1498–1504 17237398, 1:CAS:528:DC%2BD2sXntVGgtA%3D%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Reddy A, Caler E V, Andrews N W. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell, 2001, 106: 157–169 10.1016/S0092-8674(01)00421-4, 11511344, 1:CAS:528:DC%2BD3MXlvVClsLw%3D

    Article  PubMed  CAS  Google Scholar 

  20. Schonn J S, Maximov A, Lao Y, et al. Synaptotagmin-1 and -7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells. Proc Natl Acad Sci USA, 2008, 105: 3998–4003 10.1073/pnas.0712373105, 18308932

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Gustavsson N, Lao Y, Maximov A, et al. Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice. Proc Natl Acad Sci USA, 2008, 105: 3992–3997 10.1073/pnas.0711700105, 18308938

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Maximov A, Lao Y, Li H, et al. Genetic analysis of synaptotagmin-7 function in synaptic vesicle exocytosis. Proc Natl Acad Sci USA, 2008, 105: 3986–3991 10.1073/pnas.0712372105, 18308933

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Xu J, Mashimo T, Sudhof T C. Synaptotagmin-1, -2, and -9: Ca2+ sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron, 2007, 54: 567–581 10.1016/j.neuron.2007.05.004, 17521570, 1:CAS:528:DC%2BD2sXmsFeitb4%3D

    Article  PubMed  CAS  Google Scholar 

  24. Rettig J, Neher E. Emerging roles of presynaptic proteins in Ca2+-triggered exocytosis. Science, 2002, 298: 781–785 10.1126/science.1075375, 12399579, 1:CAS:528:DC%2BD38XotFSnur8%3D

    Article  PubMed  CAS  Google Scholar 

  25. Hu Z T, Chen M R, Ping Z, et al. Synaptotagmin IV regulates dense core vesicle (DCV) release in LbetaT2 cells. Biochem Biophys Res Commun, 2008, 371: 781–786 10.1016/j.bbrc.2008.04.174, 18468511, 1:CAS:528:DC%2BD1cXmsFyrt7c%3D

    Article  PubMed  CAS  Google Scholar 

  26. Fukuda M, Kowalchyk J A, Zhang X, et al. Synaptotagmin IX regulates Ca2+-dependent secretion in PC12 cells. J Biol Chem, 2002, 277: 4601–4604 10.1074/jbc.C100588200, 11751925, 1:CAS:528:DC%2BD38XhsFeqsbk%3D

    Article  PubMed  CAS  Google Scholar 

  27. Zhang X, Kim-Miller M J, Fukuda M, et al. Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis. Neuron, 2002, 34: 599–611 10.1016/S0896-6273(02)00671-2, 12062043, 1:CAS:528:DC%2BD38XktFSmu7g%3D

    Article  PubMed  CAS  Google Scholar 

  28. Han W, Rhee J S, Maximov A, et al. N-glycosylation is essential for vesicular targeting of synaptotagmin 1. Neuron, 2004, 41: 85–99 10.1016/S0896-6273(03)00820-1, 14715137, 1:CAS:528:DC%2BD2cXnt12muw%3D%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to RongYing Zhang or Tao Xu.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 30500117 and 30670502)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Xiao, Y., Zhou, W. et al. Silence of Synaptotagmin VII inhibits release of dense core vesicles in PC12 cells. SCI CHINA SER C 52, 1156–1163 (2009). https://doi.org/10.1007/s11427-009-0160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0160-y

Keywords

Navigation