Skip to main content
Log in

Changes in the distribution of calcium calmodulin-dependent protein kinase II at the presynaptic bouton after depolarization

  • Published:
Brain Cell Biology

Abstract

Phosphorylation of synapsin I by CaMKII has been reported to mobilize synaptic vesicles from the reserve pool. In the present study, the distributions of α-CaMKII and of synapsin I were compared in synaptic boutons of unstimulated and stimulated hippocampal neurons in culture by immunogold electron microscopy. CaMKII and synapsin I are located in separate domains in presynaptic terminals of unstimulated neurons. Label for α -CaMKII typically surrounds synaptic vesicle clusters and is absent from the inside of the cluster in control synapses. In contrast, intense labeling for synapsin I is found within the vesicle clusters. Following 2 minutes of depolarization in high K+, synaptic vesicles decluster and CaMKII label disperses and mingles with vesicles and synapsin I. These results indicate that, under resting conditions, CaMKII has limited access to the synapsin I in synaptic vesicle clusters. The peripheral distribution of CaMKII around vesicle clusters suggests that CaMKII-mediated declustering progresses from the periphery towards the center, with the depth of penetration into the synaptic vesicle cluster depending on the duration of CaMKII activation. Depolarization also promotes a significant increase in CaMKII immunolabel near the presynaptic active zone. Activity-induced redistribution of CaMKII leaves it in a position to facilitate phosphorylation of additional presynaptic proteins regulating neurotransmitter release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barria, A., Muller, D., Derkach, V., Griffith, L. C., and Soderling, T. R. (1997). Regulatory phosphorylation of AMPA-type glutamate receptors by CaMKII during long-term potentiation. Science 276, 2042–2045

    Article  PubMed  CAS  Google Scholar 

  • Chi, P., Greengard, P., and Ryan, T. A. (2001). Synapsin dispersion and reclustering during synaptic activity. Nat. Neurosci. 4, 1187–1193

    Article  PubMed  CAS  Google Scholar 

  • Chi, P., Greengard, P., and Ryan, T. A. (2003). Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38, 69–78

    Article  PubMed  CAS  Google Scholar 

  • Colbran, R. J. (2004a) Protein phosphatases and calcium/calmodulin-dependent protein kinase II-dependent synaptic plasticity. J. Neurosci. 24, 8404–8409

    Article  PubMed  CAS  Google Scholar 

  • Colbran, R. J. (2004b). Targeting of calcium/calmodulin-dependent protein kinase II. Biochem. J. 378, 1–16

    Article  PubMed  CAS  Google Scholar 

  • Dosemeci, A., Reese, T. S., Petersen, J., and Tao-Cheng, J. H. (2000). A novel particulate form of Ca(2+)/calmodulin-dependent protein kinase II in neurons. J. Neurosci. 20, 3076–3084

    PubMed  CAS  Google Scholar 

  • Dosemeci, A., Tao-Cheng, J. H., Vinade, L., Winters, C. A., Pozzo-Miller, L., and Reese, T. S. (2001). Glutamate-induced transient modification of the postsynaptic density. Proc. Natl. Acad. Sci. USA 98, 10428–10432

    Article  PubMed  CAS  Google Scholar 

  • Dosemeci, A., Vinade, L., Winters, C. A., Reese, T. S., and Tao-Cheng, J. -H. (2002). Inhibition of phosphatase activity prolongs NMDA-induced modification of the postsynaptic density. J. Neurocytol. 31, 605–612

    Article  PubMed  CAS  Google Scholar 

  • Dunaevsky, A., and Connor, E. A. (2000). F-actin is concentrated in nonrelease domains at frog neuromuscular junctions. J. Neurosci. 20, 6007–6012

    PubMed  CAS  Google Scholar 

  • Gitler, D., Takagishi, Y., Feng, J., Ren, Y., Rodriguiz, R. M., Wetsel, W. C., Greengard, P., and Augustine, G. J. (2004). Different presynaptic roles of synapsins at excitatory and inhibitory synapses. J. Neurosci. 24, 11368–11380

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara, A., Fukazawa, Y., Deguchi-Tawarada, M., Ohtsuka, T., and Shigemoto, R. (2005). Differential distribution of release-related proteins in the hippocampal CA3 area as revealed by freeze-fracture replica labeling. J. Comp. Neurol. 489, 195–216

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker, S., Pieribone, V. A., Czernik, A. J., Kao, H. T., Augustine, G. J., and Greengard, P. (1999). Synapsins as regulators of neurotransmitter release. Philos. Trans. R Soc. Lond. B Biol. Sci. 354, 269–279

    Article  PubMed  CAS  Google Scholar 

  • Landis, D. M. D., Hall, A. K., Weinstein, L. A., and Reese, T. S. (1988). The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron 1, 201–209.

    Article  PubMed  CAS  Google Scholar 

  • Lisman, J., Schulman, H., and Cline H. (2002). The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3, 175–190

    Article  PubMed  CAS  Google Scholar 

  • Liu, X. B., and Jones, E. G. (1996). Localization of alpha type II calcium calmodulin-dependent protein kinase at glutamatergic but not gamma-aminobutyric acid (GABAergic) synapses in thalamus and cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 7332–7336

    Article  PubMed  CAS  Google Scholar 

  • Lu, Z., McLaren, R. S., Winters, C. A., and Ralston, E. (1998). Ribosome association contributes to restricting mRNAs to the cell body of hippocampal neurons. Mol. Cell. Neurosci. 12, 363–375

    Article  PubMed  CAS  Google Scholar 

  • Malinow, R., Schulman, H., and Tsien, R. W. (1989). Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245, 862–866

    Article  PubMed  CAS  Google Scholar 

  • Mammen, A. L., Kameyama, K., Roche, K. W., and Huganir, R. L. (1997). Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J. Biol. Chem. 272, 32528–32533

    Article  PubMed  CAS  Google Scholar 

  • Nayak, A. S., Moore, C. I., and Browning, M. D. (1996). Ca2+/calmodulin-dependent protein kinase II phosphorylation of the presynaptic protein synapsin I is persistently increased during long-term potentiation. Proc. Natl. Acad. Sci. USA 93, 15451–15456

    Article  PubMed  CAS  Google Scholar 

  • Ninan, I., and Arancio, O. (2004). Presynaptic CaMKII is necessary for synaptic plasticity in cultured hippocampal neurons. Neuron 42, 129–141

    Article  PubMed  CAS  Google Scholar 

  • Ohyama, A., Hosaka, K., Komiya, Y., Akagawa, K., Yamauchi, E., Taniguchi, H., Sasagawa, N., Kumakura, K., Mochida, S., Yamauchi, T., and Igarashi, M. (2002). Regulation of exocytosis through Ca2+/ATP-dependent binding of autophosphorylated Ca2+/calmodulin-activated protein kinase II to syntaxin 1A. J. Neurosci. 22, 3342–3351

    PubMed  CAS  Google Scholar 

  • Otmakhov, N., Griffith, L. C., and Lisman, J. E. (1997). Postsynaptic inhibitors of calcium/calmodulin-dependent protein kinase type II block induction but not maintenance of pairing-induced long-term potentiation. J. Neurosci. 17, 5357–5365

    PubMed  CAS  Google Scholar 

  • Pieribone, V. A., Shupliakov, O., Brodin, L., Hilfiker-Rothenfluh, S., Czernik, A. J., and Greengard, P. (1995). Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375, 493–497

    Article  PubMed  CAS  Google Scholar 

  • Sankaranarayanan, S., Atluri, P. P., and Ryan, T. A. (2003). Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat. Neurosci. 6, 127–135.

    Article  PubMed  CAS  Google Scholar 

  • Sesack, S. R. and Snyder, C. L. (1995). Cellular and subcellular localization of syntaxin-like immunoreactivity in the rat striatum and cortex. Neuroscience 67, 993–1007

    Article  PubMed  CAS  Google Scholar 

  • Shen, K. and Meyer, T. (1999). Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284, 162–166

    Article  PubMed  CAS  Google Scholar 

  • Silva, A. J., Stevens, C. F., Tonegawa, S., and Wang, Y. (1992). Deficient hippocampal long-term potentiation in α-calcium-calmodulin kinase II mutant mice. Science 257, 201–206

    Article  PubMed  CAS  Google Scholar 

  • Snyder, D. A., Kelly, M. L., Woodbury, D. J. (2006). SNARE complex regulation by phosphorylation. Cell. Biochem. Biophys. 45, 111–123

    Article  PubMed  CAS  Google Scholar 

  • Tanner, V. A., Ploug, T., and Tao-Cheng, J. H. (1996). Subcellular localization of SV2 and other secretory vesicle components in PC12 cells by an efficient method of preembedding EM immunocytochemistry for cell cultures. J. Histochem. Cytochem. 44, 1481–1488

    PubMed  CAS  Google Scholar 

  • Tao-Cheng, J.-H., Du, J., McBain, C. J. (2000). SNAP-25 is polarized to axons and abundant throughout the axolemma: an immunogold study. J. Neurocytol. 29, 67–77.

    Article  PubMed  CAS  Google Scholar 

  • Tao-Cheng, J. H. (2006). Activity-related redistribution of presynaptic proteins at the active zone. Neuroscience 141, 1217–1224

    Article  PubMed  CAS  Google Scholar 

  • Turner, K. M., Burgoyne, R. D., and Morgan, A. (1999). Protein phosphorylation and the regulation of synaptic membrane traffic. Trends Neurosci. 22, 459–464

    Article  PubMed  CAS  Google Scholar 

  • Verona, M., Zanotti, S., Schafer, T., Racagni, G., and Popoli, M. (2000). Changes of synaptotagmin interaction with t-SNARE proteins in fsvitro after calcium/calmodulin-dependent phosphorylation. J. Neurochem. 74, 209–221

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, C. T., Sheng, Z. H., and Catterall, W. A. (1997). Phosphorylation of the synaptic protein interaction site on N-type calcium channels inhibits interactions with SNARE proteins. J. Neurosci. 17, 6929–6938

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Virginia Crocker and Rita Azzam for EM technical support. This research was supported by the Intramural Research Program of the NIH, NINDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Reese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao-Cheng, JH., Dosemeci, A., Winters, C. et al. Changes in the distribution of calcium calmodulin-dependent protein kinase II at the presynaptic bouton after depolarization. Brain Cell Bio 35, 117–124 (2006). https://doi.org/10.1007/s11068-007-9012-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11068-007-9012-5

Keywords

Navigation