Skip to main content
Log in

Protective Effect of Resveratrol against Kainate-induced Temporal Lobe Epilepsy in Rats

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Resveratrol (Res) is a phytoalexin produced naturally by several plants, which has multi functional effects such as neuroprotection, anti-inflammatory, and anti-cancer. The present study was to evaluate a possible anti-epileptic effect of Res against kainate-induced temporal lobe epilepsy (TLE) in rat. We performed behavior monitoring, intracranial electroencepholography (IEEG) recording, histological analysis, and Western blotting to evaluate the anti-epilepsy effect of Res in kainate-induced epileptic rats. Res decreased the frequency of spontaneous seizures and inhibited the epileptiform discharges. Moreover, Res could protect neurons against kainate-induced neuronal cell death in CA1 and CA3a regions and depressed mossy fiber sprouting, which are general histological characteristics both in TLE patients and animal models. Western blot revealed that the expression level of kainate receptors (KARs) in hippocampus was reduced in Res-administrated rats compared to that in epileptic ones. These results suggest that Res is a potent anti-epilepsy agent, which protects against epileptogenesis and progression of the kainate-induced TLE animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ben-Ari Y, Represa A (1990) Brief seizure episodes induce long-term potentiation and mossy fibre sprouting in the hippocampus. Trends Neurosci 13:312–318. doi:10.1016/0166-2236(90)90135-W

    Article  PubMed  CAS  Google Scholar 

  2. Nadler JV (2003) The recurrent mossy fiber pathway of the epileptic brain. Neurochem Res 28:1649–1658. doi:10.1023/A:1026004904199

    Article  PubMed  CAS  Google Scholar 

  3. Shetty AK, Zaman V, Hattiangady B (2005) Repair of the injured adult hippocampus through graft-mediated modulation of the plasticity of the dentate gyrus in a rat model of temporal lobe epilepsy. J Neurosci 25:8391–8401. doi:10.1523/JNEUROSCI.1538-05.2005

    Article  PubMed  CAS  Google Scholar 

  4. Mathern GW, Babb TL, Leite JP et al (1996) The pathogenic and progressive features of chronic human hippocampal epilepsy. Epilepsy Res 26:151–161. doi:10.1016/S0920-1211(96)00052-6

    Article  PubMed  CAS  Google Scholar 

  5. Buckmaster PS, Zhang GF, Yamawaki R (2002) Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J Neurosci 22:6650–6658

    PubMed  CAS  Google Scholar 

  6. Epsztein J, Represa A, Jorquera I et al (2005) Recurrent mossy fibers establish aberrant kainate receptor-operated synapses on granule cells from epileptic rats. J Neurosci 25:8229–8239. doi:10.1523/JNEUROSCI.1469-05.2005

    Article  PubMed  CAS  Google Scholar 

  7. Represa A, Tremblay E, Ben-Ari Y (1987) Kainate binding sites in the hippocampal mossy fibers: localization and plasticity. Neuroscience 20:739–748. doi:10.1016/0306-4522(87)90237-5

    Article  PubMed  CAS  Google Scholar 

  8. Ben-Ari Y (1985) Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14:375–403. doi:10.1016/0306-4522(85)90299-4

    Article  PubMed  CAS  Google Scholar 

  9. Das S, Das DK (2007) Anti-inflammatory responses of resveratrol. Inflamm Allergy Drug Targets 6:168–173. doi:10.2174/187152807781696464

    Article  PubMed  CAS  Google Scholar 

  10. Sun W, Wang W, Kim J et al (2008) Anti-cancer effect of resveratrol is associated with induction of apoptosis via a mitochondrial pathway alignment. Adv Exp Med Biol 614:179–186. doi:10.1007/978-0-387-74911-2_21

    Article  PubMed  Google Scholar 

  11. Gao ZB, Chen XQ, Hu GY (2006) Inhibition of excitatory synaptic transmission by trans-resveratrol in rat hippocampus. Brain Res 1111:41–47. doi:10.1016/j.brainres.2006.06.096

    Article  PubMed  CAS  Google Scholar 

  12. Wu Z, Xu Q, Qian RB et al (2008) Temporal lobe epilepsy animal model established by stereotaxic microinjection of kainic acid. Neural Regen Res 3:436–440

    Google Scholar 

  13. Racine R, Okujava V, Chipashvili S (1972) Modification of seizure activity by electrical stimulation. 3. Mechanisms. Electroencephalogr Clin Neurophysiol 32:295–299. doi:10.1016/0013-4694(72)90178-2

    Article  PubMed  CAS  Google Scholar 

  14. Chen Q, He S, Hu XL et al (2007) Differential roles of NR2A- and NR2B-containing NMDA receptors in activity-dependent brain-derived neurotrophic factor gene regulation and limbic epileptogenesis. J Neurosci 27:542–552. doi:10.1523/JNEUROSCI.3607-06.2007

    Article  PubMed  CAS  Google Scholar 

  15. Braga MF, Aroniadou-Anderjaska V, Xie J et al (2003) Bidirectional modulation of GABA release by presynaptic glutamate receptor 5 kainate receptors in the basolateral amygdala. J Neurosci 23:442–452

    PubMed  CAS  Google Scholar 

  16. Wisden W, Seeburg PH (1993) A complex mosaic of high-affinity kainate receptors in rat brain. J Neurosci 13:3582–3598

    PubMed  CAS  Google Scholar 

  17. Bureau I, Bischoff S, Heinemann SF et al (1999) Kainate receptor-mediated responses in the CA1 field of wild-type and GluR6-deficient mice. J Neurosci 19:653–663

    PubMed  CAS  Google Scholar 

  18. Ben-Ari Y, Cossart R (2000) Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci 23:580–587. doi:10.1016/S0166-2236(00)01659-3

    Article  PubMed  CAS  Google Scholar 

  19. Mulle C, Sailer A, Perez-Otano I et al (1998) Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 392:601–605. doi:10.1038/33408

    Article  PubMed  CAS  Google Scholar 

  20. Fisahn A, Contractor A, Traub RD et al (2004) Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations. J Neurosci 24:9658–9668. doi:10.1523/JNEUROSCI.2973-04.2004

    Article  PubMed  CAS  Google Scholar 

  21. Zhang X, Cui SS, Wallace AE et al (2002) Relations between brain pathology and temporal lobe epilepsy. J Neurosci 22:6052–6061

    PubMed  CAS  Google Scholar 

  22. Shetty AK, Hattiangady B (2007) Restoration of calbindin after fetal hippocampal CA3 cell grafting into the injured hippocampus in a rat model of temporal lobe epilepsy. Hippocampus 17:943–956. doi:10.1002/hipo.20311

    Article  PubMed  Google Scholar 

  23. Cheng Y, Sun AY (1994) Oxidative mechanisms involved in kainate-induced cytotoxicity in cortical neurons. Neurochem Res 19:1557–1564. doi:10.1007/BF00969006

    Article  PubMed  CAS  Google Scholar 

  24. Sun AY, Cheng Y, Bu Q et al (1992) The biochemical mechanisms of the excitotoxicity of kainic acid. Free radical formation. Mol Chem Neuropathol 17:51–63

    Article  PubMed  CAS  Google Scholar 

  25. Lewen A, Matz P, Chan PH (2000) Free radical pathways in CNS injury. J Neurotrauma 17:871–890

    Article  PubMed  CAS  Google Scholar 

  26. Monaghan DT, Cotman CW (1982) The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res 252:91–100. doi:10.1016/0006-8993(82)90981-7

    Article  PubMed  CAS  Google Scholar 

  27. Han YS, Zheng WH, Bastianetto S et al (2004) Neuroprotective effects of resveratrol against beta-amyloid-induced neurotoxicity in rat hippocampal neurons: involvement of protein kinase C. Br J Pharmacol 141:997–1005. doi:10.1038/sj.bjp.0705688

    Article  PubMed  CAS  Google Scholar 

  28. Gupta YK, Briyal S, Chaudhary G (2002) Protective effect of trans-resveratrol against kainic acid-induced seizures and oxidative stress in rats. Pharmacol Biochem Behav 71:245–249. doi:10.1016/S0091-3057(01)00663-3

    Article  PubMed  CAS  Google Scholar 

  29. Wang Q, Yu S, Simonyi A et al (2004) Resveratrol protects against neurotoxicity induced by kainic acid. Neurochem Res 29:2105–2112. doi:10.1007/s11064-004-6883-z

    Article  PubMed  CAS  Google Scholar 

  30. Kim HC, Jhoo WK, Bing G et al (2000) Phenidone prevents kainate-induced neurotoxicity via antioxidant mechanisms. Brain Res 874:15–23. doi:10.1016/S0006-8993(00)02560-9

    Article  PubMed  CAS  Google Scholar 

  31. Sumanont Y, Murakami Y, Tohda M et al (2006) Prevention of kainic acid-induced changes in nitric oxide level and neuronal cell damage in the rat hippocampus by manganese complexes of curcumin and diacetylcurcumin. Life Sci 78:1884–1891. doi:10.1016/j.lfs.2005.08.028

    Article  PubMed  CAS  Google Scholar 

  32. Wisden W, Seeburg PH (1993) Mammalian ionotropic glutamate receptors. Curr Opin Neurobiol 3:291–298. doi:10.1016/0959-4388(93)90120-N

    Article  PubMed  CAS  Google Scholar 

  33. Westbrook GL, Lothman EW (1983) Cellular and synaptic basis of kainic acid-induced hippocampal epileptiform activity. Brain Res 273:97–109. doi:10.1016/0006-8993(83)91098-3

    Article  PubMed  CAS  Google Scholar 

  34. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108. doi:10.1146/annurev.ne.17.030194.000335

    Article  PubMed  CAS  Google Scholar 

  35. Vignes M, Collingridge GL (1997) The synaptic activation of kainate receptors. Nature 388:179–182. doi:10.1038/40639

    Article  PubMed  CAS  Google Scholar 

  36. Cossart R, Epsztein J, Tyzio R et al (2002) Quantal release of glutamate generates pure kainate and mixed AMPA/kainate EPSCs in hippocampal neurons. Neuron 35:147–159. doi:10.1016/S0896-6273(02)00753-5

    Article  PubMed  CAS  Google Scholar 

  37. Marchal C, Mulle C (2004) Postnatal maturation of mossy fibre excitatory transmission in mouse CA3 pyramidal cells: a potential role for kainate receptors. J Physiol 561:27–37. doi:10.1113/jphysiol.2004.069922

    Article  PubMed  CAS  Google Scholar 

  38. Crowell JA, Korytko PJ, Morrissey RL et al (2004) Resveratrol-associated renal toxicity. Toxicol Sci 82:614–619. doi:10.1093/toxsci/kfh263

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Y. Shen and Mr. D. Huang for technical assistance and Dr. S. R. Wang for critical comments on the manuscript. This study was supported by grants from the Grants for Scientific Research of BSKY (XJ2005006) from Anhui Medical University, the Excellent Talent of Anhui province of China (06043090), the National Century Excellent Talents in University of China (NCET-06-0557) to L. Wang, and Natural Science Foundation of Anhui Province Department of Education (NSFA KJ2007A028) to D. Kong.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Ma or Liecheng Wang.

Additional information

The authors Z. Wu and Q. Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z., Xu, Q., Zhang, L. et al. Protective Effect of Resveratrol against Kainate-induced Temporal Lobe Epilepsy in Rats. Neurochem Res 34, 1393–1400 (2009). https://doi.org/10.1007/s11064-009-9920-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-9920-0

Keywords

Navigation