Skip to main content
Log in

Dynamic clamp analysis of synaptic integration in sympathetic ganglia

  • Proceedings of the International Symposium “Molecular Mechanisms of Synaptic Transmission Regulation” in Memoriam
  • Published:
Neurophysiology Aims and scope

Abstract

Advances in modern neuroscience require the identification of principles that connect different levels of experimental analysis, from molecular mechanisms to explanations of cellular functions, then to circuits, and, ultimately, to systems and behavior. Here, we examine how synaptic organization of the sympathetic ganglia may enable them to function as use-dependent amplifiers of preganglionic activity and how the gain of this amplification may be modulated by metabotropic signaling mechanisms. The approach combines a general computational model of ganglionic integration together with experimental tests of the model using the dynamic clamp method. In these experiments, we recorded intracellularly from dissociated bullfrog sympathetic neurons and then mimicked physiological synapses with virtual computer-generated synapses. It, thus, became possible to analyze the synaptic gain by recording cellular responses to complex patterns of synaptic activity that normally arise in vivo from convergent nicotinic and muscarinic synapses. The results of these studies are significant because they illustrate how gain generated through ganglionic integration may contribute to the feedback control of important autonomic behaviors, in particular to the control of the blood pressure. We dedicate this paper to the memory of Professor Vladimir Skok, whose rich legacy in synaptic physiology helped to establish the modern paradigm for connecting multiple levels of analysis in studies of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Kuba and K. Koketsu, “Synaptic events in sympathetic ganglia,” Prog. Neurobiol., 11, 77–169 (1978).

    Article  PubMed  CAS  Google Scholar 

  2. V. Skok, Physiology of Autonomic Ganglia, Igaku Shoin, Tokyo (1973).

    Google Scholar 

  3. P. A. Smith, “Amphibian sympathetic ganglia: an owner’s and operator’s manual,” Prog. Neurobiol., 43, 439–510 (1994).

    Article  PubMed  CAS  Google Scholar 

  4. G. Gabella, Structure of the Autonomic Nervous System, Chapman and Hall, London (1976).

    Google Scholar 

  5. F. B. Wang, M. C. Holst, and T. L. Powley, “The ratio of pre-to postganglionic neurons and related issues in the autonomic nervous system,” Brain Res. Brain Res. Rev., 21, 93–115 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. W. Jänig, The Integrative Action of the Autonomic Nervous System. Neurobiology of Homeostasis, Cambridge Univ. Press, Cambridge (2006).

    Google Scholar 

  7. S. Nishi, H. Soeda, and K. Koketsu, “Studies on sympathetic B and C neurons and patterns of preganglionic innervation,” J. Cell. Physiol., 66, 19–32 (1965).

    Article  PubMed  CAS  Google Scholar 

  8. J. P. Horn and W. D. Stofer, “Spinal origins of preganglionic B and C neurons that innervate paravertebral sympathetic ganglia nine and ten of the bullfrog,” J. Comp. Neurol., 268, 71–83 (1988).

    Article  PubMed  CAS  Google Scholar 

  9. B. Libet, S. Chichibu, and T. Tosaka, “Slow synaptic responses and excitability in sympathetic ganglia of the bullfrog,” J. Neurophysiol., 31, 383–395 (1968).

    PubMed  CAS  Google Scholar 

  10. V. I. Skok, “Conduction in tenth ganglion of the frog sympathetic trunk,” Fed. Proc. Transl. Suppl., 24, 363–367 (1965).

    PubMed  CAS  Google Scholar 

  11. P. R. Adams and D. A. Brown, “Synaptic inhibition of the M-current: slow excitatory post-synaptic potential mechanism in bullfrog sympathetic neurons,” J. Physiol., 332, 263–272 (1982).

    PubMed  CAS  Google Scholar 

  12. W. X. Shen and J. P. Horn, “Presynaptic muscarinic inhibition in bullfrog sympathetic ganglia,” J. Physiol., 491, Part 2, 413–421 (1996).

    PubMed  CAS  Google Scholar 

  13. T. Tosaka, S. Chichibu, and B. Libet, “Intracellular analysis of slow inhibitors and excitatory postsynaptic potentials in sympathetic ganglia of the frog,” J. Neurophysiol., 31, 396–409 (1968).

    PubMed  CAS  Google Scholar 

  14. J. Dodd and J. P. Horn, “Muscarinic inhibition of sympathetic C neurons in the bullfrog,” J. Physiol., 334, 271–291 (1983).

    PubMed  CAS  Google Scholar 

  15. L. Y. Jan and Y. N. Jan, “Peptidergic transmission in sympathetic ganglia of the frog,” J. Physiol., 327, 219–246 (1982).

    PubMed  CAS  Google Scholar 

  16. Y. N. Jan, L. Y. Jan, and S. W. Kuffler, “A peptide as a possible transmitter in sympathetic ganglia of the frog,” Proc. Natl. Acad. Sci. USA, 76, 1501–1505 (1979).

    Article  PubMed  CAS  Google Scholar 

  17. P. Jobling and J. P. Horn, “In vitro relation between preganglionic sympathetic stimulation and activity of cutaneous glands in the bullfrog,” J. Physiol., 494, Part 1, 287–296 (1996).

    PubMed  CAS  Google Scholar 

  18. R. Thorne and J. P. Horn, “Role of ganglionic cotransmission in sympathetic control of the isolated bullfrog aorta,” J. Physiol., 498, Part 1, 201–214 (1997).

    PubMed  CAS  Google Scholar 

  19. M. J. Dennis, A. J. Harris, and S. W. Kuffler, “Synaptic transmission and its duplication by focally applied acetylcholine in parasympathetic neurons in the heart of the frog,” Proc. Roy. Soc. London, Ser. B, Biol. Sci., 177, 509–539 (1971).

    CAS  Google Scholar 

  20. J. Dodd and J. P. Horn, “A reclassification of B and C neurons in the ninth and tenth paravertebral sympathetic ganglia of the bullfrog,” J. Physiol., 334, 255–269 (1983).

    PubMed  CAS  Google Scholar 

  21. H. C. Hartzell, S. W. Kuffler, R. Stickgold, and D. Yoshikami, “Synaptic excitation and inhibition resulting from direct action of acetylcholine on two types of chemoreceptors on individual amphibian parasympathetic neurons,” J. Physiol., 271, 817–846 (1977).

    PubMed  CAS  Google Scholar 

  22. U. J. McMahan and S. W. Kuffler, “Visual identification of synaptic boutons on living ganglion cells and of varicosities in postganglionic axons in the heart of the frog,” Proc. Roy. Soc. London, Ser. B, Biol. Sci., 177, 485–508 (1971).

    Article  CAS  Google Scholar 

  23. S. W. Jones, “Sodium currents in dissociated bull-frog sympathetic neurons,” J. Physiol., 389, 605–627 (1987).

    PubMed  CAS  Google Scholar 

  24. S. W. Kuffler and T. J. Sejnowski, “Peptidergic and muscarinic excitation at amphibian sympathetic synapses,” J. Physiol., 341, 257–278 (1983).

    PubMed  CAS  Google Scholar 

  25. S. Lei, W. F. Dryden, and P. A. Smith, “Regulation of N-and L-type Ca2+ channels in adult frog sympathetic ganglion B cells by nerve growth factor in vitro and in vivo,” J. Neurophysiol., 78, 3359–3370 (1997).

    PubMed  CAS  Google Scholar 

  26. D. W. Wheeler, P. H. Kullmann, and J. P. Horn, “Estimating use-dependent synaptic gain in autonomic ganglia by computational simulation and dynamic-clamp analysis,” J. Neurophysiol., 92, 2659–2671 (2004).

    Article  PubMed  Google Scholar 

  27. S. Nishi and K. Koketsu, “Early and late after discharges of amphibian sympathetic ganglion cells,” J. Neurophysiol., 31, 109–121 (1968).

    PubMed  CAS  Google Scholar 

  28. K. Koketsu, “Cholinergic synaptic potentials and the underlying ionic mechanisms,” Fed. Proc., 28, 101–112 (1969).

    PubMed  CAS  Google Scholar 

  29. D. A. Brown and P. R. Adams, “Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neuron,” Nature, 283, 673–676 (1980).

    Article  PubMed  CAS  Google Scholar 

  30. D. A. Brown, S. A. Hughes, S. J. Marsh, and A. Tinker, “Regulation of M(Kv7.2/7.3) channels in neurons by PIP2 and products of PIP2 hydrolysis: significance for receptor-mediated inhibition,” J. Physiol., 582, 917–925 (2007).

    Article  PubMed  CAS  Google Scholar 

  31. A. Y. Ivanoff and P. A. Smith, “In vivo activity of B-and C-neurons in the paravertebral sympathetic ganglia of the bullfrog,” J. Physiol., 485, Part 3, 797–815 (1995).

    PubMed  CAS  Google Scholar 

  32. V. I. Skok and A. Y. Ivanov, “What is the ongoing activity of sympathetic neurons?” J. Auton. Nerv. Syst., 7, 263–270 (1983).

    Article  PubMed  CAS  Google Scholar 

  33. P. Karila and J. P. Horn, “Secondary nicotinic synapses on sympathetic B neurons and their putative role in ganglionic amplification of activity,” J. Neurosci., 20, 908–918 (2000).

    PubMed  CAS  Google Scholar 

  34. V. Skok, A. Ivanov, L. Tatarchenko, and V. Maslov, “Ganglionic neuronal mechanisms involved in circulatory control system,” Acta Neurobiol. Exp. (Wars.), 56, 107–115 (1996).

    CAS  Google Scholar 

  35. L. A. Tatarchenko, A. Ivanov, and V. I. Skok, “Organization of the tonically active pathways through the superior cervical ganglion of the rabbit,” J. Auton. Nerv. Syst., 30, Suppl, S163–S168 (1990).

    Article  PubMed  Google Scholar 

  36. E. M. McLachlan, P. J. Davies, H. J. Habler, and J. Jamieson, “On-going and reflex synaptic events in rat superior cervical ganglion cells,” J. Physiol., 501, Part 1, 165–181 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. E. M. McLachlan, H. J. Habler, J. Jamieson, and P. J. Davies, “Analysis of the periodicity of synaptic events in neurons in the superior cervical ganglion of anaesthetized rats,” J. Physiol., 511, Part 2, 461–478 (1998).

    Article  PubMed  CAS  Google Scholar 

  38. D. Purves, E. Rubin, W. D. Snider, and J. Lichtman, “Relation of animal size to convergence, divergence, and neuronal number in peripheral sympathetic pathways,” J. Neurosci., 6, 158–163 (1986).

    PubMed  CAS  Google Scholar 

  39. V. Yu. Maslov, A. Ya. Ivanov, and V. Skok, “Background activity of the rabbit superior cervical ganglion neurons: soundness of random hypothesis of its formation,” Neurophysiology, 28, No. 1, 36–40 (1996).

    Article  Google Scholar 

  40. H. Schobesberger, B. S. Gutkin, and J. P. Horn, “A minimal model for metabotropic modulation of fast synaptic transmission and firing properties in bullfrog sympathetic B neurons,” Neurocomputing, 26/27, 255–262 (1998).

    Article  Google Scholar 

  41. H. Schobesberger, D. W. Wheeler, and J. P. Horn, “A model for pleiotropic muscarinic potentiation of fast synaptic transmission,” J. Neurophysiol., 83, 1912–1923 (2000).

    PubMed  CAS  Google Scholar 

  42. P. H. Kullmann, D. W. Wheeler, J. Beacom, and J. P. Horn, “Implementation of a fast 16-Bit dynamic clamp using LabVIEW-RT,” J. Neurophysiol., 91, 542–554 (2004).

    Article  PubMed  Google Scholar 

  43. P. H. Kullmann and J. P. Horn, “Excitatory muscarinic modulation strengthens virtual nicotinic synapses on sympathetic neurons and thereby enhances synaptic gain,” J. Neurophysiol., 96, 3104–3113 (2006).

    Article  PubMed  CAS  Google Scholar 

  44. C. Li and J. P. Horn, “Physiological classification of sympathetic neurons in the rat superior cervical ganglion,” J. Neurophysiol., 95, 187–195 (2006).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Horn.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 39, No. 6, pp. 486–492, November–December, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horn, J.P., Kullmann, P.H.M. Dynamic clamp analysis of synaptic integration in sympathetic ganglia. Neurophysiology 39, 423–429 (2007). https://doi.org/10.1007/s11062-008-9002-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-008-9002-y

Keywords

Navigation