Skip to main content
Log in

Graphene microelectrode arrays for neural activity detection

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We demonstrate a method to fabricate graphene microelectrode arrays (MEAs) using a simple and inexpensive method to solve the problem of opaque electrode positions in traditional MEAs, while keeping good biocompatibility. To study the interface differences between graphene–electrolyte and gold–electrolyte, graphene and gold electrodes with a large area were fabricated. According to the simulation results of electrochemical impedances, the gold–electrolyte interface can be described as a classical double-layer structure, while the graphene–electrolyte interface can be explained by a modified double-layer theory. Furthermore, using graphene MEAs, we detected the neural activities of neurons dissociated from Wistar rats (embryonic day 18). The signal-to-noise ratio of the detected signal was 10.31 ± 1.2, which is comparable to those of MEAs made with other materials. The long-term stability of the MEAs is demonstrated by comparing differences in Bode diagrams taken before and after cell culturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jimbo, Y., Kawana, A.: Electrical-stimulation and recording from cultured neurons using a planar electrode array. Bioelectrochem. Bioenerg. 29(2), 193–204 (1992). doi:10.1016/0302-4598(92)80067-Q

    Article  Google Scholar 

  2. Egert, U., Schlosshauer, B., Fennrich, S., Nisch, W., Fejtl, M., Knott, T., Muller, T., Hammerle, H.: A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays. Brain Res. Protoc. 2(4), 229–242 (1998). doi:10.1016/S1385-299x(98)00013-0

    Article  Google Scholar 

  3. Fofonoff, T.A., Martel, S.M., Hatsopoulos, N.G., Donoghue, J.P., Hunter, I.W.: Microelectrode array fabrication by electrical discharge machining and chemical etching. IEEE Trans. Biomed. Eng. 51(6), 890–895 (2004). doi:10.1109/Tbme.2004.826679

    Article  Google Scholar 

  4. Gross, G.W., Rhoades, B.K., Reust, D.L., Schwalm, F.U.: Stimulation of monolayer networks in culture through thin-film indium-tin oxide recording electrodes. J. Neurosci. Meth. 50(2), 131–143 (1993). doi:10.1016/0165-0270(93)90001-8

    Article  Google Scholar 

  5. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). doi:10.1038/Nmat1849

    Article  ADS  Google Scholar 

  6. Hess, L.H., Jansen, M., Maybeck, V., Hauf, M.V., Seifert, M., Stutzmann, M., Sharp, I.D., Offenhausser, A., Garrido, J.A.: Graphene transistor arrays for recording action potentials from electrogenic cells. Adv. Mater. 23(43), 5045–5049 (2011). doi:10.1002/adma.201102990

    Article  Google Scholar 

  7. Cohen-Karni, T., Qing, Q., Li, Q., Fang, Y., Lieber, C.M.: Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 10(3), 1098–1102 (2010). doi:10.1021/Nl1002608

    Article  ADS  Google Scholar 

  8. Chen, C.H., Lin, C.T., Chen, J.J., Hsu, W.L., Chang, Y.C., Yeh, S.R., Li, L.J., Yao, D.J.: A graphene-based microelectrode for recording neural signals. In: 16th Int. Conf. on Solid-State Sensors, Actuators and Microsystems, Beijing, China, 5-9 Jun. 2011, pp. 1883–1886

  9. Bendali, A., Hess, L.H., Seifert, M., Forster, V., Stephan, A.F., Garrido, J.A., Picaud, S.: Purified neurons can survive on peptide-free graphene layers. Adv. Healthcare Mater. 2(7), 929–933 (2013). doi:10.1002/adhm.201200347

    Article  Google Scholar 

  10. Park, D.-W., Schendel, A.A., Mikael, S., Brodnick, S.K., Richner, T.J., Ness, J.P., Hayat, M.R., Atry, F., Frye, S.T., Pashaie, R., Thongpang, S., Ma, Z., Williams, J.C.: Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat. Commun. 5, 5258 (2014). doi:10.1038/ncomms6258

    Article  ADS  Google Scholar 

  11. Kuzum, D., Takano, H., Shim, E., Reed, J.C., Juul, H., Richardson, A.G., de Vries, J., Bink, H., Dichter, M.A., Lucas, T.H., Coulter, D.A., Cubukcu, E., Litt, B.: Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat. Commun. 5, 5259 (2014). doi:10.1038/ncomms6259

    Article  ADS  Google Scholar 

  12. Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009). doi:10.1038/nature07719

    Article  ADS  Google Scholar 

  13. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y.I., Kim, Y.-J., Kim, K.S., Ozyilmaz, B., Ahn, J.-H., Hong, B.H., Iijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010). doi:10.1038/nnano.2010.132

    Article  ADS  Google Scholar 

  14. Mailly-Giacchetti, B., Hsu, A., Wang, H., Vinciguerra, V., Pappalardo, F., Occhipinti, L., Guidetti, E., Coffa, S., Kong, J., Palacios, T.: pH sensing properties of graphene solution-gated field-effect transistors. J. Appl. Phys. 114(8), 084505 (2013). doi:10.1063/1.4819219

    Article  ADS  Google Scholar 

  15. Wang, Y.Y., Burke, P.J.: A large-area and contamination-free graphene transistor for liquid-gated sensing applications. Appl. Phys. Lett. 103(5), 052103 (2013). doi:10.1063/1.4816764

    Article  ADS  Google Scholar 

  16. Zhuo, H., Peng, F.C., Lin, L.M., Qu, Y., Lai, F.C.: Optical properties of porous anodic aluminum oxide thin films on quartz substrates. Thin Solid Films 519(7), 2308–2312 (2011). doi:10.1016/j.tsf.2010.11.024

    Article  ADS  Google Scholar 

  17. Blake, P., Hill, E.W., Castro Neto, A.H., Novoselov, K.S., Jiang, D., Yang, R., Booth, T.J., Geim, A.K.: Making graphene visible. Appl. Phys. Lett. 91(6), 063124 (2007). doi:10.1063/1.2768624

    Article  ADS  Google Scholar 

  18. Reina, A., Jia, X.T., Ho, J., Nezich, D., Son, H.B., Bulovic, V., Dresselhaus, M.S., Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009). doi:10.1021/Nl801827v

    Article  ADS  Google Scholar 

  19. Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). doi:10.1103/Physrevlett.97.187401

    Article  ADS  Google Scholar 

  20. Malard, L.M., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S.: Raman spectroscopy in graphene. Phys. Rep. 473(5–6), 51–87 (2009). doi:10.1016/j.physrep.2009.02.003

    Article  ADS  Google Scholar 

  21. Piela, B., Wrona, P.K.: Capacitance of the gold electrode in 0.5 M H2SO4 solution: a.c. impedance studies. J. Electroanal. Chem. 388(1–2), 69-79 (1995). doi:10.1016/0022-0728(94)03848-W

  22. Wang, H.N., Pilon, L.: Accurate simulations of electric double layer capacitance of ultramicroelectrodes. J. Phys. Chem. C 115(33), 16711–16719 (2011). doi:10.1021/Jp204498e

    Article  Google Scholar 

  23. Xia, J.L., Chen, F., Li, J.H., Tao, N.J.: Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4(8), 505–509 (2009). doi:10.1038/Nnano.2009.177

    Article  ADS  Google Scholar 

  24. Casero, E., Parra-Alfambra, A.M., Petit-Domínguez, M.D., Pariente, F., Lorenzo, E., Alonso, C.: Differentiation between graphene oxide and reduced graphene by electrochemical impedance spectroscopy (EIS). Electrochem. Commun. 20, 63–66 (2012). doi:10.1016/j.elecom.2012.04.002

    Article  Google Scholar 

  25. Chen, Z., Appenzeller, J.: Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices. In: Electron Devices Meeting, San Francisco, CA, 15-17 Dec. 2008, pp. 1-4

  26. Fang, T., Konar, A., Xing, H., Jena, D.: Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett. 91(9), 092109 (2007). doi:10.1063/1.2776887

    Article  ADS  Google Scholar 

  27. Cheng, J., Zhu, G., Wu, L., Du, X., Zhang, H., Wolfrum, B., Jin, Q., Zhao, J., Offenhausser, A., Xu, Y.: Photopatterning of self-assembled poly (ethylene) glycol monolayer for neuronal network fabrication. J. Neurosci. Meth. 213(2), 196–203 (2013). doi:10.1016/j.jneumeth.2012.12.020

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Basic Research Program of China (973 Program) (Nos. 2011CB707505 and 2012CB933303), the National Science Foundation of China (Nos. 21275153 and 61271161), the Scientific Equipment Research Project of the Chinese Academy of Sciences (No. YZ201337), the CAS-Helmholtz joint research team (No. GJHZ1306) and the Science and Technology Project of Jiangsu Province, China (No. BE2012049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghui Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Wu, L., Cheng, J. et al. Graphene microelectrode arrays for neural activity detection. J Biol Phys 41, 339–347 (2015). https://doi.org/10.1007/s10867-015-9382-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-015-9382-3

Keywords

Navigation