Skip to main content
Log in

A simple Markov model of sodium channels with a dynamic threshold

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Characteristics of action potential generation are important to understanding brain functioning and, thus, must be understood and modeled. It is still an open question what model can describe concurrently the phenomena of sharp spike shape, the spike threshold variability, and the divisive effect of shunting on the gain of frequency-current dependence. We reproduced these three effects experimentally by patch-clamp recordings in cortical slices, but we failed to simulate them by any of 11 known neuron models, including one- and multi-compartment, with Hodgkin-Huxley and Markov equation-based sodium channel approximations, and those taking into account sodium channel subtype heterogeneity. Basing on our voltage-clamp data characterizing the dependence of sodium channel activation threshold on history of depolarization, we propose a 3-state Markov model with a closed-to-open state transition threshold dependent on slow inactivation. This model reproduces the all three phenomena. As a reduction of this model, a leaky integrate-and-fire model with a dynamic threshold also shows the effect of gain reduction by shunt. These results argue for the mechanism of gain reduction through threshold dynamics determined by the slow inactivation of sodium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Azouz, R., & Gray, C. M. (1999). Cellular mechanisms contributing to response variability of cortical neurons in vivo. Journal of Neuroscience, 19, 2209–2223.

    CAS  PubMed  Google Scholar 

  • Badel, L., Lefort, S., Brette, R., Petersen, C. C. H., Gerstner, W., & Richardson, M. J. E. (2008). Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. Journal of Neurophysiology, 99(2), 656–666.

    Article  PubMed  Google Scholar 

  • Benda, J., Maler, L., & Longtin, A. (2010). Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds. Journal of Neurophysiology, 104(5), 2806–2820.

    Article  PubMed  Google Scholar 

  • Borg-Graham, L. (1999). Interpretations of data and mechanisms for hippocampal pyramidal cell models. Cerebral Cortex, 13, 19–138.

    Article  Google Scholar 

  • Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94(5), 3637–3642.

    Article  PubMed  Google Scholar 

  • Carter, B. C., Giessel, A. J., Sabatini, B. L., & Bean, B. P. (2012). Transient sodium current at subthreshold voltages: activation by EPSP waveforms. Neuron, 75(6), 1081–1093.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chacron, M. J., Longtin, A., St-Hilaire, M., & Maler, L. (2000). Suprathreshold stochastic firing dynamics with memory in P-type electroreceptors. Physical Review Letters, 85(7), 1576–1579.

    Article  CAS  PubMed  Google Scholar 

  • Chacron, M. J., Pakdaman, K., & Longtin, A. (2003). Interspike interval correlations, memory, adaptation, and refractoriness in a leaky integrate-and-fire model with threshold fatigue. Neural Computation, 15(2), 253–278.

    Article  PubMed  Google Scholar 

  • Chacron, M. J., Lindner, B., & Longtin, A. (2007). Threshold fatigue and information transfer. Journal of Computational Neuroscience, 23(3), 301–311.

    Article  PubMed  Google Scholar 

  • Chance, F. S., Abbott, L. F., & Reyes, A. D. (2002). Gain modulation from background synaptic input. Neuron, 35, 773–782.

    Article  CAS  PubMed  Google Scholar 

  • Chizhov, A. V. (2013). Conductance-based refractory density model of primary visual cortex. Journal of Computational Neuroscience PMID: 23888313 (Epub ahead of print). http://link.springer.com/article/10.1007%2Fs10827-013-0473-5

  • Chizhov, A. V., & Graham, L. J. (2007). Population model of hippocampal pyramidal neurons, linking a refractory density approach to conductance-based neurons. Physical Review E, 75, 011924.

    Article  Google Scholar 

  • Chizhov, A. V., & Graham, L. J. (2008). Efficient evaluation of neuron populations receiving colored-noise current based on a refractory density method. Physical Review E, 77, 011910.

    Article  Google Scholar 

  • Chizhov A.V., Smirnova E.Yu., Karabasov I.N., Simonov A.Yu., Marinazzo D., Schramm A., Graham L.J. (2011). Spike thresholds dynamics explains the ability of a neuron to divide. Proceedings of the conference. Neuroinformatics, 2, 205–213.

  • Colwell, L. J., & Brenner, M. P. (2009). Action potential initiation in the Hodgkin-Huxley model. PLoS Computational Biology, 5, e1000265.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fernandez, F. R., & White, J. A. (2009). Reduction of spike after depolarization by increased leak conductance alters interspike interval variability. Journal of Neuroscience, 29(4), 973–986.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez, F. R., & White, J. A. (2010). Gain control in CA1 pyramidal cells using changes in somatic conductance. Journal of Neuroscience, 30(1), 230–241.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez, F. R., Broicher, T., Truong, A., & White, J. A. (2011). Membrane voltage fluctuations reduce spike frequency adaptation and preserve output gain in CA1 pyramidal neurons in a high-conductance state. Journal of Neuroscience, 31(10), 3880–3893.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fricker, D., Verheugen, J. A., & Miles, R. (1999). Cell-attached measurements of the firing threshold of rat hippocampal neurones. Journal of Physiology, 517(3), 791–804.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graham, L. J., & Schramm, A. (2009). In vivo dynamic clamp: The functional impact of synaptic and intrinsic conductances in visual cortex. In A. Destexhe, & T. Bal (Eds.) Dynamic clamp: From principles to applications. Springer.

  • Gutkin, B., & Ermentrout, G. B. (2006). Neuroscience: spikes too kinky in the cortex? Nature, 440(7087), 999–1000.

    Article  CAS  PubMed  Google Scholar 

  • Henze, D. A., & Buzsáki, G. (2001). Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity. Neuroscience, 105(1), 121–130.

    Article  CAS  PubMed  Google Scholar 

  • Huang, M., Volgushev, M., & Wolf, F. (2012). A small fraction of strongly cooperative sodium channels boosts neuronal encoding of high frequencies. PLoS One, 7, e37629.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johannesma, P. I. M. (1968). Diffusion models of the stochastic acticity of neurons. In E. R. Caianiello (Ed.), Neural networks (pp. 116–144). Berlin: Springer.

    Chapter  Google Scholar 

  • Liu, Y. H., & Wang, X. J. (2001). Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. Journal of Computational Neuroscience, 10(1), 25–45.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, D. A., Shu, Y., & Yu, Y. (2007). Neurophysiology: Hodgkin and Huxley model–still standing? Nature, 445(E1–2), discussion E2–3.

  • Migliore, M., Hoffman, D. A., Magee, J. G., & Jonhston, D. (1999). Role of an A-type K + conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. Journal of Computational Neuroscience, 7, 5–15.

    Article  CAS  PubMed  Google Scholar 

  • Milescu, L. S., Yamanishi, T., Ptak, K., & Smith, J. C. (2010). Kinetic properties and functional dynamics of sodium channels during repetitive spiking in a slow pacemaker neuron. Journal of Neuroscience, 30(36), 12113–12127.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naundorf, B., Wolf, F., & Volgushev, M. (2006). Unique features of action potential initiation in cortical neurons. Nature, 440(7087), 1060–1063.

    Article  CAS  PubMed  Google Scholar 

  • Platkiewicz, J., & Brette, R. (2010). A threshold equation for action potential initiation. PLoS Computational Biology, 6(7), e1000850.

    Article  PubMed Central  PubMed  Google Scholar 

  • Platkiewicz, J., & Brette, R. (2011). Impact of fast sodium channel inactivation on spike threshold dynamics and synaptic integration. PLoS Computational Biology, 7, e1001129.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Priebe, N. J., & Ferster, D. (2012). Mechanisms of neuronal computation in mammalian visual cortex. Neuron, 75(2), 194–208.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilent, W. B., & Contreras, D. (2005). Stimulus-dependent changes in spike threshold enhance feature selectivity in rat barrel cortex neurons. Journal of Neuroscience, 25, 2983–2991.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Y., Shu, Y., & McCormick, D. A. (2008). Cortical action potential back propagation explains spike threshold variability and rapid-onset kinetics. Journal of Neuroscience, 28(29), 7260–7272.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The reported study was supported by RFBR, research projects 11-04-01281a and 13-04-01835a.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chizhov.

Additional information

Action Editor: David Golomb

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1387 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chizhov, A.V., Smirnova, E.Y., Kim, K.K. et al. A simple Markov model of sodium channels with a dynamic threshold. J Comput Neurosci 37, 181–191 (2014). https://doi.org/10.1007/s10827-014-0496-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-014-0496-6

Keywords

Navigation