Skip to main content
Log in

A thalamo-cortical neural mass model for the simulation of brain rhythms during sleep

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Cortico-thalamic interactions are known to play a pivotal role in many brain phenomena, including sleep, attention, memory consolidation and rhythm generation. Hence, simple mathematical models that can simulate the dialogue between the cortex and the thalamus, at a mesoscopic level, have a great cognitive value. In the present work we describe a neural mass model of a cortico-thalamic module, based on neurophysiological mechanisms. The model includes two thalamic populations (a thalamo-cortical relay cell population, TCR, and its related thalamic reticular nucleus, TRN), and a cortical column consisting of four connected populations (pyramidal neurons, excitatory interneurons, inhibitory interneurons with slow and fast kinetics). Moreover, thalamic neurons exhibit two firing modes: bursting and tonic. Finally, cortical synapses among pyramidal neurons incorporate a disfacilitation mechanism following prolonged activity. Simulations show that the model is able to mimic the different patterns of rhythmic activity in cortical and thalamic neurons (beta and alpha waves, spindles, delta waves, K-complexes, slow sleep waves) and their progressive changes from wakefulness to deep sleep, by just acting on modulatory inputs. Moreover, simulations performed by providing short sensory inputs to the TCR show that brain rhythms during sleep preserve the cortex from external perturbations, still allowing a high cortical activity necessary to drive synaptic plasticity and memory consolidation. In perspective, the present model may be used within larger cortico-thalamic networks, to gain a deeper understanding of mechanisms beneath synaptic changes during sleep, to investigate the specific role of brain rhythms, and to explore cortical synchronization achieved via thalamic influences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

NMM:

Neural mass model

TCR:

Thalamo-cortical relay

TRN:

Thalamo-reticular nucleus

SWS:

slow wave sleep

References

  • Amzica, F., & Steriade, M. (2000). Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex. The Journal of Neuroscience, 20(17), 6648–6665.

    CAS  PubMed  Google Scholar 

  • Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2002). Model of thalamocortical slow-wave sleep oscillations and transitions to activated States. The Journal of Neuroscience, 22(19), 8691–8704.

    CAS  PubMed  Google Scholar 

  • Bhattacharya, B. S., Coyle, D., & Maguire, L. P. (2011). A thalamo-cortico-thalamic neural mass model to study alpha rhythms in Alzheimer’s disease. Neural Networks, 24(6), 631–645. doi:10.1016/j.neunet.2011.02.009.

    Article  PubMed  Google Scholar 

  • Bhattacharya, B. S., Cakir, Y., Serap-Sengor, N., Maguire, L., & Coyle, D. (2013). Model-based bifurcation and power spectral analyses of thalamocortical alpha rhythm slowing in Alzheimer’s Disease. Neurocomputing, 115, 11–22. doi:10.1016/j.neucom.2012.10.023.

    Article  Google Scholar 

  • Bonjean, M., Baker, T., Bazhenov, M., Cash, S., Halgren, E., & Sejnowski, T. (2012). Interactions between core and matrix thalamocortical projections in human sleep spindle synchronization. The Journal of Neuroscience, 32(15), 5250–5263. doi:10.1523/JNEUROSCI.6141-11.2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown, R. E., Basheer, R., McKenna, J. T., Strecker, R. E., & McCarley, R. W. (2012). Control of sleep and wakefulness. Physiological Reviews, 92(3), 1087–1187. doi:10.1152/physrev.00032.2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cona, F., & Ursino, M. (2013). A multi-layer neural-mass model for learning sequences using theta/gamma oscillations. International Journal of Neural Systems, 23(3), 1–18.

    Article  Google Scholar 

  • Cona, F., Zavaglia, M., Massimini, M., Rosanova, M., & Ursino, M. (2011). A neural mass model of interconnected regions simulates rhythm propagation observed via TMS-EEG. NeuroImage, 57(3), 1045–1058. doi:10.1016/j.neuroimage.2011.05.007.

    Article  CAS  PubMed  Google Scholar 

  • Cona, F., Zavaglia, M., & Ursino, M. (2012). Binding and segmentation via a neural mass model trained with Hebbian and anti-Hebbian mechanisms. International Journal of Neural Systems, 22(02), 1–20. doi:10.1142/S0129065712500037.

    Article  Google Scholar 

  • Contreras, D., & Steriade, M. (1995). Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. The Journal of Neuroscience, 15(1 Pt 2), 604–622.

    CAS  PubMed  Google Scholar 

  • Contreras, D., & Steriade, M. (1996). Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. The Journal of Physiology, 490(Pt 1), 159–179.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Contreras, D., Timofeev, I., & Steriade, M. (1996). Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. The Journal of Physiology, 494(Pt 1), 251–264.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crunelli, V., & Hughes, S. W. (2010). The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nature Neuroscience, 13(1), 9–17. doi:10.1038/nn.2445.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crunelli, V., Errington, A. C., Hughes, S. W., & Tóth, T. I. (2011). The thalamic low-threshold Ca2+ potential: a key determinant of the local and global dynamics of the slow (<1 Hz) sleep oscillation in thalamocortical networks. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 369(1952), 3820–3839. doi:10.1098/rsta.2011.0126.

    Article  CAS  Google Scholar 

  • David, O., & Friston, K. J. (2003). A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage, 20(3), 1743–1755. doi:10.1016/j.neuroimage.2003.07.015.

    Article  PubMed  Google Scholar 

  • Destexhe, A. (2009). Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. Journal of Computational Neuroscience, 27(3), 493–506. doi:10.1007/s10827-009-0164-4.

    Article  PubMed  Google Scholar 

  • Destexhe, A., & Sejnowski, T. J. (2003). Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiological Reviews, 83(4), 1401–1453. doi:10.1152/physrev.00012.2003.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Destexhe, A., Hughes, S. W., Rudolph, M., & Crunelli, V. (2007). Are corticothalamic “up” states fragments of wakefulness? Trends in Neurosciences, 30(7), 334–342. doi:10.1016/j.tins.2007.04.006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esser, S. K., Hill, S., & Tononi, G. (2009). Breakdown of effective connectivity during slow wave sleep: investigating the mechanism underlying a cortical gate using large-scale modeling. Journal of Neurophysiology, 102(4), 2096–2111. doi:10.1152/jn.00059.2009.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fuentealba, P., & Steriade, M. (2005). The reticular nucleus revisited: intrinsic and network properties of a thalamic pacemaker. Progress in Neurobiology, 75(2), 125–141. doi:10.1016/j.pneurobio.2005.01.002.

    Article  CAS  PubMed  Google Scholar 

  • Golshani, P., Liu, X. B., & Jones, E. G. (2001). Differences in quantal amplitude reflect GluR4- subunit number at corticothalamic synapses on two populations of thalamic neurons. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 4172–4177. doi:10.1073/pnas.061013698.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hobson, J. A., & Pace-Schott, E. F. (2002). The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nature Reviews Neuroscience, 3(9), 679–693. doi:10.1038/nrn915.

    Article  CAS  PubMed  Google Scholar 

  • Huguenard, J. R., & McCormick, D. A. (2007). Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends in Neurosciences, 30(7), 350–356. doi:10.1016/j.tins.2007.05.007.

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich, E. M., & Edelman, G. M. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Sciences of the United States of America, 105(9), 3593–3598. doi:10.1073/pnas.0712231105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jansen, B. H., & Rit, V. G. (1995). Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological Cybernetics, 73(4), 357–366. doi:10.1007/BF00199471.

    Article  CAS  PubMed  Google Scholar 

  • Jones, E. G. (2007). The thalamus (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jones, E. G. (2009). Synchrony in the interconnected circuitry of the thalamus and cerebral cortex. Annals of the New York Academy of Sciences, 1157, 10–23. doi:10.1111/j.1749-6632.2009.04534.x.

    Article  PubMed  Google Scholar 

  • Kellaway, P. (1985). Sleep and epilepsy. Epilepsia, 26(Suppl 1), S15–S30.

    Article  PubMed  Google Scholar 

  • Kellaway, P., & Frost, J. D. (1983). Biorhythmic modulation of epileptic events. In T. A. Pedley & B. S. Meldrum (Eds.), Recent advances in epilepsy (Vol. 1, pp. 139–154). London: Churchill-Livingstone.

    Google Scholar 

  • Lam, Y. W., Nelson, C. S., & Sherman, S. M. (2006). Mapping of the functional interconnections between thalamic reticular neurons using photostimulation. Journal of Neurophysiology, 96(5), 2593–2600. doi:10.1152/jn.00555.2006.

    Article  PubMed  Google Scholar 

  • Lee, S., & Dan, Y. (2012). Neuromodulation of brain states. Neuron, 76(1), 209–222. doi:10.1016/j.neuron.2012.09.012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lumer, E. D., Edelman, G. M., & Tononi, G. (1997a). Neural dynamics in a model of the thalamocortical system. II. The role of neural synchrony tested through perturbations of spike timing. Cerebral Cortex, 7(3), 228–236.

    Article  CAS  PubMed  Google Scholar 

  • Lumer, E. D., Edelman, G. M., & Tononi, G. (1997b). Neural dynamics in a model of the thalamocortical system. I. Layers, loops and the emergence of fast synchronous rhythms. Cerebral Cortex, 7(3), 207–227.

    Article  CAS  PubMed  Google Scholar 

  • Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275(5297), 213–215. doi:10.1126/science.275.5297.213.

    Article  CAS  PubMed  Google Scholar 

  • Marreiros, A. C., Daunizeau, J., Kiebel, S. J., & Friston, K. J. (2008). Population dynamics: variance and the sigmoid activation function. NeuroImage, 42(1), 147–157. doi:10.1016/j.neuroimage.2008.04.239.

    Article  PubMed  Google Scholar 

  • Massimini, M., & Amzica, F. (2001). Extracellular calcium fluctuations and intracellular potentials in the cortex during the slow sleep oscillation. Journal of Neurophysiology, 85(3), 1346–1350.

    CAS  PubMed  Google Scholar 

  • McCormick, D. A., & Bal, T. (1997). Sleep and arousal: thalamocortical mechanisms. Annual Review of Neuroscience, 20, 185–215. doi:10.1146/annurev.neuro.20.1.185.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, D. A., & Prince, D. A. (1985). Two types of muscarinic response to acetylcholine in mammalian cortical neurons. Proceedings of the National Academy of Sciences of the United States of America, 82(18), 6344–6348.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller, K. D., Pinto, D. J., & Simons, D. J. (2001). Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Current Opinion in Neurobiology, 11(4), 488–497.

    Article  CAS  PubMed  Google Scholar 

  • Mölle, M., & Born, J. (2011). Slow oscillations orchestrating fast oscillations and memory consolidation. Progress in Brain Research, 193, 93–110. doi:10.1016/B978-0-444-53839-0.00007-7.

    Article  PubMed  Google Scholar 

  • Ogilvie, R. D. (2001). The process of falling asleep. Sleep Medicine Reviews, 5(3), 247–270. doi:10.1053/smrv.2001.0145.

    Article  PubMed  Google Scholar 

  • Olcese, U., Esser, S. K., & Tononi, G. (2010). Sleep and synaptic renormalization: a computational study. Journal of Neurophysiology, 104(6), 3476–3493. doi:10.1152/jn.00593.2010.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pavlides, C., & Winson, J. (1989). Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. The Journal of Neuroscience, 9(8), 2907–2918.

    CAS  PubMed  Google Scholar 

  • Pirini, M., & Ursino, M. (2010). A mass model of interconnected thalamic populations including both tonic and burst firing mechanisms. International Journal of Bioelectromagnetism, 12(1), 26–31.

    Google Scholar 

  • Roberts, J. A., & Robinson, P. A. (2012). Corticothalamic dynamics: structure of parameter space, spectra, instabilities, and reduced model. Physical Review E, 85(1 Pt 1), 011910.

    Article  CAS  Google Scholar 

  • Robinson, P. A., Rennie, C. J., & Rowe, D. L. (2002). Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Physical Review E, 65(4 Pt 1), 041924.

    Article  CAS  Google Scholar 

  • Rosanova, M., Casali, A., Bellina, V., Resta, F., Mariotti, M., & Massimini, M. (2009). Natural frequencies of human corticothalamic circuits. The Journal of Neuroscience, 29(24), 7679–7685. doi:10.1523/JNEUROSCI.0445-09.2009.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Vives, M. V., & McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 3(10), 1027–1034. doi:10.1038/79848.

    Article  CAS  PubMed  Google Scholar 

  • Sherman, S. M. (2001). Tonic and burst firing: dual modes of thalamocortical relay. Trends in Neurosciences, 24(2), 122–126.

    Article  CAS  PubMed  Google Scholar 

  • Sherman, S. M., & Guillery, R. W. (2002). The role of the thalamus in the flow of information to the cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357(1428), 1695–1708. doi:10.1098/rstb.2002.1161.

    Article  Google Scholar 

  • Sherman, S. M., & Koch, C. (1986). The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Experimental Brain Research, 63(1), 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Shouse, M. N. (2001). Physiology underlying relationship of epilepsy and sleep. In D. S. Dinner & H. O. Lüders (Eds.), Epilepsy and sleep (pp. 43–62). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Shouse, M. N., da Silva, A. M., & Sammaritano, M. (1996). Circadian rhythm, sleep, and epilepsy. Journal of Clinical Neurophysiology, 13(1), 32–50.

    Article  CAS  PubMed  Google Scholar 

  • Sinha, S. R. (2011). Basic mechanisms of sleep and epilepsy. Journal of Clinical Neurophysiology, 28(2), 103–110. doi:10.1097/WNP.0b013e3182120d41.

    Article  PubMed  Google Scholar 

  • Skaggs, W. E., & McNaughton, B. L. (1996). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science, 271(5257), 1870–1873.

    Article  CAS  PubMed  Google Scholar 

  • Sotero, R. C., Trujillo-Barreto, N. J., Iturria-Medina, Y., Carbonell, F., & Jimenez, J. C. (2007). Realistically coupled neural mass models can generate EEG rhythms. Neural Computation, 19(2), 478–512. doi:10.1162/neco.2007.19.2.478.

    Article  PubMed  Google Scholar 

  • Steriade, M. (1993). Cellular substrates of brain rhythms. In E. Niedermeyer & F. Lopes da Silva (Eds.), Electroencephalography: Basic principles, clinical applications, and related fields (pp. 27–62). Baltimore: Williams and Wilkins.

    Google Scholar 

  • Steriade, M. (2000). Corticothalamic resonance, states of vigilance and mentation. Neuroscience, 101(2), 243–276.

    Article  CAS  PubMed  Google Scholar 

  • Steriade, M. (2003). The corticothalamic system in sleep. Frontiers in Bioscience: a Journal and Virtual Library, 8, d878–d899.

    Article  CAS  Google Scholar 

  • Steriade, M. (2005). Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends in Neurosciences, 28(6), 317–324. doi:10.1016/j.tins.2005.03.007.

    Article  CAS  PubMed  Google Scholar 

  • Steriade, M. (2006). Grouping of brain rhythms in corticothalamic systems. Neuroscience, 137(4), 1087–1106. doi:10.1016/j.neuroscience.2005.10.029.

    Article  CAS  PubMed  Google Scholar 

  • Steriade, M., Domich, L., Oakson, G., & Deschênes, M. (1987). The deafferented reticular thalamic nucleus generates spindle rhythmicity. Journal of Neurophysiology, 57(1), 260–273.

    CAS  PubMed  Google Scholar 

  • Steriade, M., Dossi, R. C., & Nuñez, A. (1991). Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. The Journal of Neuroscience, 11(10), 3200–3217.

    CAS  PubMed  Google Scholar 

  • Steriade, M., Contreras, D., Dossi, R. C., & Nuñez, A. (1993a). The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. The Journal of Neuroscience, 13(8), 3284–3299.

    CAS  PubMed  Google Scholar 

  • Steriade, M., Nuñez, A., & Amzica, F. (1993b). Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. The Journal of Neuroscience, 13(8), 3266–3283.

    CAS  PubMed  Google Scholar 

  • Steriade, M., Amzica, F., & Contreras, D. (1996). Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation. The Journal of Neuroscience, 16(1), 392–417.

    CAS  PubMed  Google Scholar 

  • Suffczynski, P., Kalitzin, S., Pfurtscheller, G., & Lopes da Silva, F. H. (2001). Computational model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention. International Journal of Psychophysiology, 43(1), 25–40.

    Article  CAS  PubMed  Google Scholar 

  • Suffczynski, P., Kalitzin, S., & Lopes Da Silva, F. H. (2004). Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience, 126(2), 467–484. doi:10.1016/j.neuroscience.2004.03.014.

    Article  CAS  PubMed  Google Scholar 

  • Timofeev, I., Contreras, D., & Steriade, M. (1996). Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat. The Journal of Physiology, 494(Pt 1), 265–278.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Timofeev, I., Grenier, F., & Steriade, M. (2001). Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 1924–1929. doi:10.1073/pnas.041430398.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ursino, M., Cona, F., & Zavaglia, M. (2010). The generation of rhythms within a cortical region: Analysis of a neural mass model. NeuroImage, 52(3), 1080–1094. doi:10.1016/j.neuroimage.2009.12.084.

    Article  PubMed  Google Scholar 

  • Wamsley, E. J., Tucker, M. A., Shinn, A. K., Ono, K. E., McKinley, S. K., Ely, A. V., et al. (2012). Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation? Biological Psychiatry, 71(2), 154–161. doi:10.1016/j.biopsych.2011.08.008.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang, X. J., Golomb, D., & Rinzel, J. (1995). Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 92(12), 5577–5581.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265(5172), 676–679.

    Article  CAS  PubMed  Google Scholar 

  • Zavaglia, M., Astolfi, L., Babiloni, F., & Ursino, M. (2006). A neural mass model for the simulation of cortical activity estimated from high resolution EEG during cognitive or motor tasks. Journal of Neuroscience Methods, 157(2), 317–329. doi:10.1016/j.jneumeth.2006.04.022.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Cona.

Additional information

Action editor: Alain Destexhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cona, F., Lacanna, M. & Ursino, M. A thalamo-cortical neural mass model for the simulation of brain rhythms during sleep. J Comput Neurosci 37, 125–148 (2014). https://doi.org/10.1007/s10827-013-0493-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0493-1

Keywords

Navigation