Skip to main content

Advertisement

Log in

The effects of excitatory amino acids and their transporters on function and structure of the distal retina in albino rabbits

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To study the physiological and pathological roles of excitatory amino acid transporters in the distal retina of albino rabbits.

Methods

Albino rabbits were injected intravitreally in one eye with different doses of l- or d-isomers of glutamate or aspartate, with mixtures of l-glutamate and antagonists to glutamate receptors or with inhibitors of glutamate transporters. The other eye was injected with saline, and served as a control. The electroretinogram (ERG) was recorded 4 h and 2 weeks after injection. At the end of the ERG follow-up period, retinas were prepared for light microscopy.

Results

The ERG b-wave was reduced and the a-wave augmented by both isomers of EAAs when tested 4 h after injection. Long-term (2-week) follow-up indicated severe damage to the retina by both isomers of EAAs. Antagonists to glutamate-gated ionic channels failed to protect the rabbit distal retina from permanent damage. Competitive inhibitors of GLAST-1 transporter were highly effective in blocking synaptic transmission in the OPL and in inducing permanent ERG deficit. Selective inhibition of the GLT-1 transporter caused short-term augmentation of the ERG and no permanent ERG deficit.

Conclusion

GLAST-1, the glutamate transporter of Müller cells, plays a major role in synaptic transmission within the OPL of the rabbit retina. Over-activation of GLAST-1 seems to induce permanent damage to the distal rabbit retina via yet unidentified mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cervetto L, MacNichol EF Jr (1972) Inactivation of horizontal cells in turtle retina by glutamate and aspartate. Science 178:767–768

    Article  PubMed  CAS  Google Scholar 

  2. Thoreson WB, Witkovsky P (1999) Glutamate receptors and circuits in the vertebrate retina. Prog Retin Eye Res 18:765–810

    Article  PubMed  CAS  Google Scholar 

  3. Wu SW (1994) Synaptic transmission in the outer retina. Ann Rev Physiol 56:141–168

    Article  CAS  Google Scholar 

  4. Lucas DR, Newhouse JP (1957) The toxic effect of sodium l-glutamate on the inner layers of the retina. Arch Ophthalmol 58:193–201

    Article  CAS  Google Scholar 

  5. Olney JW (1982) The toxic effects of glutamate and related compounds in the retina and the brain. Retina 2:341–359

    Article  PubMed  CAS  Google Scholar 

  6. Sisk DR, Kuwabara T (1985) Histologic changes in the inner retina of albino rats following intravitreal injection of monosodium l-glutamate. Graefe’s Arch Clin Exp Ophthalmol 223:250–258

    Article  CAS  Google Scholar 

  7. Vorwerk CK, Lipton SA, Zurakowski D, Hyman BT, Sabel BA, Dreyer EB (1996) Chronic low-dose glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine. Invest Ophthalmol Vis Sci 37:1618–1624

    PubMed  CAS  Google Scholar 

  8. Rauen T, Rothstein JD, Wassle H (1996) Differential expression of three glutamate transporter subtypes in the rat retina. Cell Tissue Res 286:325–336

    Article  PubMed  CAS  Google Scholar 

  9. Lehre KP, Davanger S, Danbolt NC (1997) Localization of the glutamate transporter protein GLAST in rat retina. Brain Res 744:129–137

    Article  PubMed  CAS  Google Scholar 

  10. Harada T, Harada C, Watanabe M, Inoue Y, Sakagawa T, Nakayama N, Sasaki S, Okuyama S, Watase K, Wada K, Tanaka K (1998) Functions of the two glutamate transporters GLAST and GLT-1 in the retina. Proc Natl Acad Sci USA 95:4663–4666

    Article  PubMed  CAS  Google Scholar 

  11. Rauen T, Kanner BI (1994) Localization of the glutamate transporter GLT-1 in rat and macaque monkey retina. Neurosci Lett 169:137–140

    Article  PubMed  CAS  Google Scholar 

  12. Pow DV, Barnett NL, Penfold P (2000) Are neuronal transporters relevant in retinal glutamate homeostasis? Neurochem Int 37:191–198

    Article  PubMed  CAS  Google Scholar 

  13. Gaal L, Roska B, Picaud SA, Wu SM, Marc R, Werblin FS (1998) Postsynaptic response kinetics are controlled by a glutamate transporter at cone photoreceptors. J Neurophysiol 79:190–196

    PubMed  CAS  Google Scholar 

  14. Barnett NL, Pow DV (2000) Antisense knockdown of GLAST, a glial glutamate transporter, compromises retinal function. Invest Ophthalmol Vis Sci 41:585–591

    PubMed  CAS  Google Scholar 

  15. Matsui K, Hosoi N, Tachibana M (1999) Active role of glutamate uptake in the synaptic transmission from retinal nonspiking neurons. J Neurosci 19:6755–6766

    PubMed  CAS  Google Scholar 

  16. Higgs MH, Lukasiewicz PD (1999) Glutamate uptake limits synaptic excitation of retinal ganglion cell. J Neurosci 19:3691–3700

    PubMed  CAS  Google Scholar 

  17. Gibson BL, Reif-Lehrer L (1985) Mg+2 reduces N-methyl-d-aspartate neurotoxicity in embryonic chick neural retina in vitro. Neurosci Lett 57:13–18

    Article  PubMed  CAS  Google Scholar 

  18. Kashii S, Takahashi M, Mandai M, Shimizu H, Honad Y, Sasa M, Ujihara H, Tamura Y, Yokota T, Akaike A (1994) Protective action of dopamine against glutamate neurotoxicity in the retina. Invest Ophthalmol Vis Sci 35:685–695

    PubMed  CAS  Google Scholar 

  19. Abu El-Asrar AM, Morse PH, Maimone D, Torczynski E, Reder AT (1992) MK-801 protects retinal neurons from hypoxia and toxicity of glutamate and aspartate. Invest Ophthalmol Vis Sci 33:3463–3468

    Google Scholar 

  20. Sucher NJ, Lipton SA, Dreyer EB (1997) Molecular basis of glutamate toxicity in retinal ganglion cells. Vision Res 37:3483–3493

    Article  PubMed  CAS  Google Scholar 

  21. Schuettauf F, Naskar R, Vorwerk CK, Zurakowski D, Dreyer EB (2000) Ganglion cells loss after optic nerve crush mediated through AMPA-kainate and NMDA receptors. Invest Ophthalmol Vis Sci 41:4313–4316

    PubMed  CAS  Google Scholar 

  22. Bresnick GH (1989) Excitotoxins: a possible new mechanism for the pathogenesis of ischemic retinal damage. Arch Ophthalmol 107:339–341

    Article  PubMed  CAS  Google Scholar 

  23. Mosinger JL, Olney JW (1989) Photothrombosis-induced ischemic neuronal degeneration in the rat retina. Exp Neurol 105:110–113

    Article  PubMed  CAS  Google Scholar 

  24. Louzada-Junior P, Dias JJ, Santos WF, Lachat JJ, Bradford HF, Coutinho-Netto J (1992) Glutamate release in experimental ischaemia of the retina: an approach using microdialysis. J Neurochem 59:358–363

    Article  PubMed  CAS  Google Scholar 

  25. Joo CK, Choi JS, Ko HW, Park KY, Sohn S, Chun MH, Oh YJ, Gwag BJ (1999) Necrosis and apoptosis after retinal ischemia: involvement of NMDA-mediated excitoxicity and P53. Invest Ophthalmol Vis Sci 40:713–720

    PubMed  CAS  Google Scholar 

  26. Dreyer EB, Grosskreutz CL (1997) Excitatory mechanisms in retinal ganglion cell death in primary open angle glaucoma (POAG). Clin Neurosci 4:270–273

    PubMed  CAS  Google Scholar 

  27. Dreyer EB (1998) A proposed role for excitoxicity in glaucoma. J Glaucoma 7:62–67

    Article  PubMed  CAS  Google Scholar 

  28. Heidinger V, Hicks D, Sahel J, Dreyfus H (1999) Ability of retinal Müller cells to protect neurons against excitoxicity in vitro depends upon maturation and neuron-glial interactions. Glia 25:229–239

    Article  PubMed  CAS  Google Scholar 

  29. Kawasaki A, Otori Y, Barnstable CJ (2000) Müller cell protection of rat retinal ganglion cells from glutamate and nitric oxide neurotoxicity. Invest Ophthalmol Vis Sci 41:3444–3450

    PubMed  CAS  Google Scholar 

  30. Copenhagen DR, Jahr CE (1988) Release of endogenous excitatory amino acids from turtle photoreceptors. Nature 341:536–539

    Article  Google Scholar 

  31. Greenberger LM, Besharse JC (1985) Stimulation of photoreceptor disc shedding and pigment epithelial phagocytosis by glutamate, aspartate and other amino acids. J Comp Neurol 239:361–372

    Article  PubMed  CAS  Google Scholar 

  32. Kleinschmidt J, Zucker CL, Yazulla S (1986) Neurotoxic action of kainic acid in the isolated toad and goldfish retina: I Description of effects. J Comp Neurol 254:184–195

    Article  PubMed  CAS  Google Scholar 

  33. Kleinschmidt J, Zucker CL, Yazulla S (1986) Neurotoxic action of kainic acid in the isolated toad and goldfish retina: II Mechanism of action. J Comp Neurol 254:196–208

    Article  PubMed  CAS  Google Scholar 

  34. Loewenstein A, Zemel E, Lazar M, Perlman I (1993) Drug-induced retinal toxicity in albino rabbits: effects of imipenem and aztreonam. Invest Ophthalmol Vis Sci 34:3466–3476

    PubMed  CAS  Google Scholar 

  35. Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG (1994) Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 14:5559–5569

    PubMed  CAS  Google Scholar 

  36. Chatton J-Y, Shimamoto K, Magistretti PJ (2001) Effects of glial glutamate transporter inhibitors on intracellular Na+ in mouse astrocytes. Brain Res 893:46–52

    Article  PubMed  CAS  Google Scholar 

  37. Tano Y, Chandler DB, Machemer R (1980) Treatment of intraocular proliferation with intravitreal injection of triamcinolone acetonide. Am J Ophthalmol 90:810–816

    PubMed  CAS  Google Scholar 

  38. Zemel E, Loewenstein A, Lazar M, Perlman I (1993) The effects of myristyl γ-picolinium chloride on the rabbit retina: morphologic observations. Invest Ophthalmol Vis Sci 34:2360–2366

    PubMed  CAS  Google Scholar 

  39. Shahar J, Zemel E, Perlman I, Loewenstein A (2012) Physiological and toxicological effects of cefuroxime on the albino rabbit retina. Invest Ophthalmol Vis Sci 53:906–914

    Article  PubMed  CAS  Google Scholar 

  40. Hood DC, Birch DG (1992) A computational model of the amplitude and implicit time of the b-wave of the human ERG. Vis Neurosci 8:107–126

    Article  PubMed  CAS  Google Scholar 

  41. Brown KT (1968) The electroretinogram: its components and their origin. Vision Res 8:633–677

    Article  PubMed  CAS  Google Scholar 

  42. Slaughter MM, Miller RF (1981) 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retinal research. Science 211:182–185

    Article  PubMed  CAS  Google Scholar 

  43. Massey SC, Miller RF (1987) Excitatory amino acid receptors of rod- and cone-driven horizontal cells in the rabbit retina. J Neurophysiol 57:645–659

    PubMed  CAS  Google Scholar 

  44. Massey SC, Miller RF (1990) N-methyl-d-aspartate receptors of ganglion cells in rabbit retina. J Neurophysiol 63:16–30

    PubMed  CAS  Google Scholar 

  45. Bloomfield SA, Dowling JE (1985) Roles of aspartate and glutamate in synaptic transmission in rabbit retina. I. Outer plexiform layer. J Neurophysiol 53:699–713

    PubMed  CAS  Google Scholar 

  46. Normann RA, Perlman I, Daly SJ (1986) The effects of continuous superfusion of l-aspartate and l-glutamate on horizontal cells of the turtle retina. Vis Res 26:259–268

    Article  PubMed  CAS  Google Scholar 

  47. Gundersen V, Danbolt NC, Ottersen OP, Strom-Mathisen J (1994) Demonstration of glutamate/aspartate uptake activity in nerve endings by use of antibodies recognising exogenous d-asparate. Neurosci 57:97–111

    Article  Google Scholar 

  48. Eliasof S, Arriza JL, Leighton BH, Kavanaugh MP, Amara SG (1998) Excitatory amino acid transporters of the salamander retina: identification, localization, and function. J Neurosci 18:698–712

    PubMed  CAS  Google Scholar 

  49. Schousboe A, Svenneby G, Hertz L (1977) Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J Neurochem 29:999–1005

    Article  PubMed  CAS  Google Scholar 

  50. Karwoski CJ, Xu X (1999) Current source-density analysis of light-evoked field potentials in rabbit retina. Vis Neurosci 16:369–377

    Article  PubMed  CAS  Google Scholar 

  51. Lei B, Perlman I (1999) The contribution of voltage- and time-dependent potassium conductances to the electroretinogram in rabbits. Vis Neurosci 16:743–754

    Article  PubMed  CAS  Google Scholar 

  52. Lasater EM, Dowling JE (1982) Carp horizontal cells in culture respond selectively to l-glutamate and its agonists. Proc Natl Acad Sci USA 79:936–940

    Article  PubMed  CAS  Google Scholar 

  53. Nawy S, Jahr CE (1991) cGMP-gated conductance in retinal bipolar cells is suppressed by photoreceptor transmitter. Neuron 7:677–683

    Article  PubMed  CAS  Google Scholar 

  54. Morigiwa K, Vardi N (1999) Differential expression of ionotropic glutamate receptor subunits in the outer retina. J Comp Neurol 405:173–184

    Article  PubMed  CAS  Google Scholar 

  55. Reichenbach A, Kasper M, El-Hifnawi E, Eckstein A-K, Fuchs U (1995) Hepatic retinopathy: morphological features of retinal glial (Müller) cells accompanying hepatic failure. Acta Neuropathol 90:273–281

    Article  PubMed  CAS  Google Scholar 

  56. Reichenbach A, Stolzenburg J-U, Wolburg H, Hartig W, El-Hifnawi E, Martin H (1995) Effects of enhanced extracellular ammonia concentration on cultured mammalian retinal glial (Müller) cells. Glia 13:195–208

    Article  PubMed  CAS  Google Scholar 

  57. Bringmann A, Kuhrt H, Germer A, Biedermann B, Reichenbach A (1998) Mueller (glial) cell development in vivo and in retinal explant cultures: morphology and electrophysiology, and the effects of elevated ammonia. J Hirnfosch 39:193–206

    CAS  Google Scholar 

  58. Pow DV, Robinson SR (1994) Glutamate in some retinal neurons is derived solely from glia. Neuroscience 60:355–366

    Article  PubMed  CAS  Google Scholar 

  59. Perlman I (2009) Testing retinal toxicity of drugs in animal models using electrophysiological and morphological techniques. Doc Ophthalmol 118:3–28

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Technion V.P.R. Fund—The Selma Mitrani Macular Degeneration Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Perlman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levinger, E., Zemel, E. & Perlman, I. The effects of excitatory amino acids and their transporters on function and structure of the distal retina in albino rabbits. Doc Ophthalmol 125, 249–265 (2012). https://doi.org/10.1007/s10633-012-9354-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-012-9354-x

Keywords

Navigation