Skip to main content

Advertisement

Log in

Nicotinic Agonists, Antagonists, and Modulators From Natural Sources

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Acetylcholine receptors were initially defined as nicotinic or muscarinic, based on selective activation by two natural products, nicotine and muscarine. Several further nicotinic agonists have been discovered from natural sources, including cytisine, anatoxin, ferruginine, anabaseine, epibatidine, and epiquinamide. These have provided lead structures for the design of a wide range of synthetic agents.

2. Natural sources have also provided competitive nicotinic antagonists, such as the Erythrina alkaloids, the tubocurarines, and methyllycaconitine. Noncompetitive antagonists, such as the histrionicotoxins, various izidines, decahydroquinolines, spiropyrrolizidine oximes, pseudophrynamines, ibogaine, strychnine, cocaine, and sparteine have come from natural sources. Finally, galanthamine, codeine, and ivermectin represent positive modulators of nicotinic function, derived from natural sources.

3. Clearly, research on acetylcholine receptors and functions has been dependent on key natural products and the synthetic agents that they inspired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abood, L. G., and Grassi, S. (1986). [3H]-Methylcarbamylcholine, a new radioligand for studying brain nicotinic receptors. Biochem. Pharmacol. 35:4199–4202.

    Article  PubMed  Google Scholar 

  • Abood, L. G., Salles, K. S., and Maiti, K. (1988). Structure-activity studies of carbamate and other esters: Agonists and antagonists to nicotine. Pharmacol. Biochem. Behav. 30:403–408.

    Article  PubMed  Google Scholar 

  • Abreo, M. A., Lin, N.-H., Garvey, D. S., Gunn, D. E., Hettinger, A.-M., Wasicak, J. T., Pavlik, P. A., Martin, Y. C., Donnelly-Roberts, D. L., Anderson, D. J., Sullivan, J. P., Williams, M., Arneric, S. P., and Holladay, M. W. (1996). Novel 3-pyridyl ethers with subnanomolar affinity for central neuronal nicotinic acetylcholine receptors. J. Med. Chem. 39:817–825.

    Article  PubMed  Google Scholar 

  • Aiyar, V. N., Benn, M. H., Hanna, T., Jacyno, J., Roth, S. H., and Wilkens, J. L. (1979). The principal toxin of Delphinium brownii, and its mode of action. Experientia 35:1367–1368.

    PubMed  Google Scholar 

  • Albuquerque, E. X., Barnard, E. A., Chiu, T. M., Lapa, A. J., Dolly, J. O., Jansson, S.-E., Daly, J. W., and Witkop, B. (1973). Acetylcholine receptor and ion conductance modulator sites at the murine neuromuscular junction: Evidence from specific toxin reactions. Proc. Natl. Acad. Sci. USA 70:949–953.

    PubMed  Google Scholar 

  • Albuquerque, E. X., Tsai, M.-C., Aronstam, R. S., Witkop, B., Eldefrawi, A. T., and Eldefrawi, M. E. (1980). Phencyclidine interactions with the ion channel of the acetylcholine receptor and electrogenic membrane. Proc. Natl. Acad. Sci. USA 77:1224–1228.

    PubMed  Google Scholar 

  • Anderson, D. J., and Arneric, S. P. (1994). Nicotinic receptor binding of [3H]cystisine, [3H]nicotine and [3H]methylcarbamylcholine in rat brain. Eur. J. Pharmacol. 253:261–267.

    Article  PubMed  Google Scholar 

  • Anderson, D. J., Williams, M., Pauly, J. R., Raszkiewicz, J. L., Campbell, J. E., Rotert, G., Surber, B., Thomas, S. B., Wasicak, J., Arneric, S. P., and Sullivan, J. P. (1995). Characterization of [3H]ABT-418: A novel cholinergic channel ligand. J. Pharmacol. Exp. Ther. 273:1434–1441.

    PubMed  Google Scholar 

  • Archer, S., Lands, A. M., and Lewis, T. R. (1962). Isomeric 1-acetoxytropine methiodides. J. Med. Pharm. Chem. 5:423–430.

    Article  Google Scholar 

  • Arias, H. R. (1998). Binding sites for exogenous and endogenous non-competitive inhibitors of the nicotinic acetylcholine receptor. Biochim. Biophys. Acta 1376:173–220.

    PubMed  Google Scholar 

  • Aronstam, R. S., Daly, J. W., Spande, T. F., Narayanan, T. K., and Albuquerque, E. X. (1986). Interaction of gephyrotoxin and indolizidine alkaloids with the nicotinic acetylcholine receptor-ion channel complex of Torpedo electroplax. Neurochem. Res. 11, 8:1227–1240.

    Article  PubMed  Google Scholar 

  • Aronstam, R. S., Edwards, M. W., Daly, J. W., and Albuquerque, E. X. (1988). Interactions of piperidine derivatives with the nicotinic cholinergic receptor complex from Torpedo electric organ. Neurochem. Res. 13:171–176.

    Article  PubMed  Google Scholar 

  • Aronstam, R. S., Eldefrawi, A. T., Pessah, I. N., Daly, J. W., Albuquerque, E. X., and Eldefrawi, M. E. (1981). Regulation of [3H]perhydrohistrionicotoxin binding to Torpedo ocellata electroplax by effectors of the acetylcholine receptor. J. Biol. Chem. 256:2843–2850.

    PubMed  Google Scholar 

  • Aronstam, R. S., King, C. T., Jr., Albuquerque, E. X., Daly, J. W., and Feigl, D. M. (1985). Binding of [3H]perhydrohistrionicotoxin and [3H]phencyclidine to the nicotinic receptor-ion channel complex of Torpedo electroplax. Inhibition by histrionicotoxins and derivatives. Biochem. Pharmacol. 34:3037–3047.

    Article  PubMed  Google Scholar 

  • Avalos, M., Parker, M. J., Maddox, F. N., Carroll, F. I., and Luetje, C. W. (2002). Effects of pyridine ring substitutions on affinity, efficacy, and subtype selectivity of neuronal nicotinic receptor agonist epibatidine. J. Pharmacol. Exp. Ther. 302:1246–1252.

    Article  PubMed  Google Scholar 

  • Avenoza, A., Busto, J. H., Cativiela, C., Dordal, A., Frigola, J., and Peregrina, J. M. (2002). Synthesis, activity and theoretical study of ABT-418 analogues. Tetrahedron 58:4505–4511.

    Article  Google Scholar 

  • Ayers, J. T., Dwoskin, L. P., Deaciuc, A. G., Grinevich, V. P., Zhu, J., and Crooks, P. A. (2002). bis-Azaaromatic quaternary ammonium analogues: Ligands for α4β2* and α7* subtypes of neuronal nicotinic receptors. Bioorg. Med. Chem. Lett. 12:3067–3071.

    Article  PubMed  Google Scholar 

  • Badio, B., and Daly, J. W. (1994). Epibatidine, a potent analgetic and nicotinic agonist. Mol. Pharmacol. 45:563–569.

    PubMed  Google Scholar 

  • Badio, B., Garraffo, H. M., Padgett, W. L., Greig, N. H., and Daly, J. W. (1997a). Pseudophrynaminol: A potent noncompetitive blocker of nicotinic receptor-channels. Biochem. Pharmacol. 53:671–676.

    Article  Google Scholar 

  • Badio, B., Garraffo, H. M., Plummer, C. V., Padgett, W. L., and Daly, J. W. (1997b). Synthesis and nicotinic activity of epiboxidine: An isoxazole analogue of epibatidine. Eur. J. Pharmacol. 321:189–194.

    Article  Google Scholar 

  • Badio, B., Garraffo, H. M., Spande, T. F., and Daly, J. W. (1994). Epibatidine: Discovery and definition as a potent analgesic and nicotinic agonist. Med. Chem. Res. 4:440–448.

    Google Scholar 

  • Badio, B., Shi, D., Garraffo, H. M., and Daly, J. W. (1995). Antinociceptive effects of the alkaloid epibatidine: Further studies on involvement of nicotinic receptors. Drug Dev. Res. 36:46–59.

    Article  Google Scholar 

  • Badio, B., Padgett, W. L., and Daly, J. W. (1997c). Ibogaine: A potent noncompetitive blocker of ganglionic/neuronal nicotinic receptors. Mol. Pharmacol. 51:1–5.

    Google Scholar 

  • Badio, B., Shi, D., Shin, Y., Hutchinson, K. D., Padgett, W. L., and Daly, J. W. (1996). Spiropyrrolizidines: A new class of blockers of nicotinic receptors. Biochem. Pharmacol. 52:933–939.

    Article  PubMed  Google Scholar 

  • Balestra, B., Vailati, S., Moretti, M., Hanke, W., Clementi, F., and Gotti, C. (2000). Chick optic lobe contains a developmentally regulated α2α5β2 nicotinic receptor subtype. Mol. Pharmacol. 58:300–311.

    PubMed  Google Scholar 

  • Balboni, G., Marastoni, M., Merighi, S., Borea, P. A., and Tomatis, R. (2000). Synthesis and activity of 3-pyridylamine ligands at central nicotinic receptors. Eur. J. Med. Chem. 35:979–988.

    Article  PubMed  Google Scholar 

  • Barabino, B., Vailati, S., Moretti, M., Mcintosh, J. M., Longhi, R., Clementi, F., and Gotti, C. (2001). An α4β4 nicotinic receptor subtype is present in chick retina: Identification, characterization and pharmacological comparison with the transfected α4β4 and α6β4 subtypes. Mol. Pharmacol. 59:1410–1417.

    PubMed  Google Scholar 

  • Barlocco, D., Cignarella, G., Tondi, D., Vianello, P., Villa, S., Bartolini, A., Ghelardini, C., Galeotti, N., Anderson, D. J., Kuntzweiler, T. A., Colombo, D., and Toma, L. (1998). Mono- and disubstituted-3,8-diazabicyclo[3.2.1]octane derivatives as analgesics structurally related to epibatidine: Synthesis, activity, and modeling. J. Med. Chem. 41:674–681.

    Article  PubMed  Google Scholar 

  • Battersby, A. R., and Hodson, H. F. (1968). Alkaloids of calabash curare and Strychnos species. In Manske, R. H. F. (ed.), The Alkaloids, Chemistry and Physiology, Vol. 11, Academic Press, New York, pp. 189–204.

    Google Scholar 

  • Beach, J. W., Damaj, M. I., Jonnala, R. R., Terry, A. V., Jr., and Buccafusco, J. J. (1998). Synthesis and in vivo and in vitro evaluation of isoarecolone and derivatives. Med. Chem. Res. 8:510–522.

    Google Scholar 

  • Bencherif, M., Eisenhour, C. M., Prince, R. J., Lippiello, P. M., and Lukas, R. J. (1995). The “calcium antagonist” TMB-8 [3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester] is a potent, non-competitive functional antagonist at diverse nicotinic acetylcholine receptor subtypes. J. Pharmacol. Exp. Ther. 275:1418–1426.

    PubMed  Google Scholar 

  • Bencherif, M., Lovette, M. E., Fowler, K. W., Arrington, S., Reeves, L., Caldwell, W. S., and Lippiello, P. M. (1996). RJR-2403: A nicotinic agonist with CNS selectivity I. In vitro characterization. J. Pharmacol. Exp. Ther. 279:1413–1421.

    PubMed  Google Scholar 

  • Bencherif, M., Schmitt, J. D., Bhatti, B. S., Crooks, P., Caldwell, W. S., Lovette, M. E., Fowler, K., Reeves, L., and Lippiello, P. M. (1998). The heterocyclic substituted pyridine derivative (±)-2-(-3-pyridinyl)-1-azabicyclo[2.2.2]octane (RJR-2429).: A selective ligand at nicotinic acetylcholine receptors. J. Pharmacol. Exp. Ther. 284:886–894.

    PubMed  Google Scholar 

  • Bertrand, S., Patt, J. T., Spang, J. E., Westera, G., Schubigcor, P. A., and Bertrand, D. (1999). Neuronal nAChR stereoselectivity to non-natural epibatidine derivatives. FEBS Lett. 450:273–279.

    Article  PubMed  Google Scholar 

  • Bick, R. C., Gillard, J. W., and Leow, H. M. (1979a). Alkaloids of Darlingia darlingiana. Aust. J. Chem. 32:2523–2536.

    Google Scholar 

  • Bick, R. C., Gillard, J. W., and Leow, H.-M. (1979b). Alkaloids of Darlingia ferruginea. Australian J. Chem. 32:2537–2543.

    Google Scholar 

  • Bikádi, Z., and Simonyi, M. (2003). Muscarinic and nicotinic cholinergic agonists: Structural analogies and discrepancies. Curr. Med. Chem. 10:2611–2620.

    Article  PubMed  Google Scholar 

  • Brier, T. J., Mellor, I. R., Tikhonov, D. B., Neagoe, I., Shao, Z., Brierley, M. J., Stromgaard, K., Jaroszewski, J. W., Krogsgaard-Larsen, P., and Usherwood, P. N. R. (2003). Contrasting actions of philanthotoxin-343 and philanthotoxin-(12) on human muscle nicotinic acetylcholine receptors. Mol. Pharmacol. 64:954–964.

    Article  PubMed  Google Scholar 

  • Briggs, C. A., Anderson, D. J., Brioni, J. D., Buccafusco, J. J., Buckley, M. J., Campbell, J. E., Decker, M. W., Donnelly-Roberts, D., Elliott, R. L., Gopalakrishnan, M., Holladay, M. W., Hui, Y.-H., Jackson, W. J., Kim, D. J. B., Marsh, K. C., O’Neill, A., Prendergast, M. A., Ryther, K. B., Sullivan, J. P., and Arneric, S. P. (1997). Functional characterization of the novel neuronal nicotinic acetylcholine receptor ligand GTS-21 in vitro and in vivo. Pharmacol. Biochem. Behav. 57:231–241.

    Article  PubMed  Google Scholar 

  • Broad, L. M., Felthouse, C., Zwart, R., McPhie, G. I., Pearson, K. H., Craig, P. J., Wallace, L., Broadmore, R. J., Boot, J. R., Keenan, M., Baker, S. R., and Sher, E. (2002). PSAB-OFP, a selective α7 nicotinic receptor agonist, is also a potent agonist of the 5-HT3 receptor. Eur. J. Pharmacol. 452:137–144.

    Article  PubMed  Google Scholar 

  • Brown, L. L., Kulkarni, S., Pavlova, O. A., Koren, A. O., Mukhin, A. G., Newman, A. H., and Horti, A. G. (2002). Synthesis and evaluation of a novel series of 2-chloro-5-((1-methyl-2-(S)-pyrrolidinyl)methoxy)-3-(2-(4-pyridinyl)vinyl)pyridine analogues as potential positron emission tomography imaging agents for nicotinic acetylcholine receptors. J. Med. Chem. 45:2841–2849.

    Article  PubMed  Google Scholar 

  • Bryant, D. L., Free, R. B., Thomasy, S. M., Lapinsky, D. J., Ismail, K. A., McKay, S. B., Bergmeier, S. C., and McKay, D. B. (2002). Structure-activity studies with ring E analogues of methyllycaconitine on bovine adrenal α3β4 nicotinic receptors. Neurosci. Res. 42:57–63.

    Article  PubMed  Google Scholar 

  • Bunnelle, W. H., Dart, M. J., and Schrimpf, M. R. (2004). Design of ligands for the nicotinic acetylcholine receptor: The quest for selectivity. Curr. Topics Med. Chem. 4:299–334.

    Article  Google Scholar 

  • Bunnelle, W. H., and Decker, M. W. (2003). Neuronal nicotinic acetylcholine receptor ligands as potential analgesics. Exp. Opin. Ther. Patents 13:1003–1021.

    Article  Google Scholar 

  • Cachelin, A. B., and Rust, G. (1995). β-Subunits co-determine the sensitivity of rat neuronal nicotinic receptors to antagonists. Pflügers Arch-Eur. J. Physiol. 429:449–451.

    Article  Google Scholar 

  • Carbonnelle, E., Sparatore, F., Canu-Boido, C., Salvagno, C., Baldani-Guerra, B., Terstappen, G., Zwart, R., Vijverberg, H., Clementi, F., and Gotti, C. (2003). Nitrogen substitution modifies the activity of cystisine on neuronal nicotinic receptor subtypes. Eur. J. Pharmacol. 471:85–96.

    Article  PubMed  Google Scholar 

  • Carroll, F. I., Lee, J. R., Navarro, H. A., Brieaddy, L. E., Abraham, P., Damaj, M. I., and Martin, B. R. (2001a). Synthesis, nicotinic acetylcholine receptor binding, and antinociceptive properties of 2-exo-2-(2′-substituted-3′-phenyl-5′-pyridinyl)-7-azabicyclo[2.2.1]-heptanes. Novel nicotinic antagonist. J. Med. Chem. 44:4039–4041.

    Article  Google Scholar 

  • Carroll, F. I., Lee, J. R., Navarro, H. A., Ma, W., Brieaddy, L. E., Abraham, P., Damaj, M. I., and Martin, B. R. (2002). Synthesis, nicotinic acetylcholine receptor binding, and antinociceptive properties of 2-exo-2-(2′,3′-disubstituted 5′-pyridinyl)-7-azabicyclo[2.2.1]heptanes: Epibatidine analogues. J. Med. Chem. 45:4755–4761.

    Article  PubMed  Google Scholar 

  • Carroll, F. I., Liang, F., Navarro, H. A., Brieaddy, L. E., Abraham, P., Damaj, M. I., and Martin, B. R. (2001b). Synthesis, nicotinic acetylcholine receptor binding, and antinociceptive properties of 2-exo-2-(2′-substituted-5′-pyridinyl)-7-azabicyclo[2.2.1]-heptanes. Epibatidine analogues. J. Med. Chem. 44:2229–2237.

    Article  Google Scholar 

  • Caulfield, M. P., and Birdsall, N. J. M. (1998). International union of pharmacology. XVII. Classification of muscarinic acetylcholine receptor. Pharmacol. Rev. 50:279–290.

    PubMed  Google Scholar 

  • Cheng, Y.-X., Dukat, M., Dowd, M., Fiedler, W., Martin, B., Damaj, M. I., and Glennon, R. A. (1999). Synthesis and binding of 6,7,8,9-tetrahydro-5H-pyrido[3,4-d]azepine and related ring-opened analogs at central nicotinic receptors. Eur. J. Med. Chem. 34:177–190.

    Article  Google Scholar 

  • Cheng, J., Zhang, C., Stevens, E. D., Izenwasser, S., Wade, D., Chen, S., Paul, D., and Trudell, M. L. (2002). Synthesis and biological evaluation at nicotinic acetylcholine receptors of N-arylalkyl- and N-aryl-7-azabicyclo[2.2.1]heptanes. J. Med. Chem. 45:3041–3047.

    Article  PubMed  Google Scholar 

  • Choi, K. J., Cha, J. H., Cho, Y. S., Pae, A. N., Jin, C., Yook, J., Cheon, H. G., Jeong, D., Kong, J. Y., and Koh, H. Y. (1999). Binding affinities of 3-(3-phenylisoxazol-5-yl)methylidene 1-azabicycles to acetylcholine receptors. Bioorg. Med. Chem. Lett. 9:2795–2800.

    Article  PubMed  Google Scholar 

  • Clarke, P. B. S., and El-Bizri, H. (1994). Blockade of nicotinic receptor-mediated release of dopamine from striatal synaptosomes by chlorisondamine and other nicotinic antagonists administered in vitro. Br. J. Pharmacol. 111:406–413.

    PubMed  Google Scholar 

  • Clarke, P. B. S. (1992). The fall and rise of neuronal α-bungarotoxin binding proteins. Trends Pharmacol. Sci. 13:407–413.

    Article  PubMed  Google Scholar 

  • Cohen, C., Bergis, O. E., Galli, F., Lochead, A. W., Jegham, S., Biton, B., Léonardon, J., Avenet, P., Sgard, F., Besnard, F., Graham, D., Coste, A., Oblin, A., Curet, O., Voltz, C., Gardes, A., Caille, D., Perrault, G., George, P., Soubrié, P., and Scatton, B. (2003). SSR591813, a novel selective and partial α4β2 nicotinic receptor agonist with potential as an aid to smoking cessation. J. Pharmacol. Exp. Ther. 306:407–420.

    Article  PubMed  Google Scholar 

  • Cosford, N. D. P., Bleicher, L., Herbaut, A., McCallum, J. S., Vernier, J.-M., Dawson, H., Whitten, J. P., Adams, P., Chavez-Noriega, L., Correa, L. D., Crona, J. H., Mahaffy, L. S., Menzaghi, F., Rao, T. S., Reid, R., Sacaan, A. I., Santori, E., Stauderman, K. A., Whelan, K., Lloyd, G. K., and McDonald, I. A. (1996). (S)-(−)-5-Ethynyl-3-(1-methyl-2-pyrrolidinyl)pyridine maleate (SIB-1508Y): A novel anti-parkinsonian agent with selectivity for neuronal nicotinic acetylcholine receptors. J. Med. Chem. 39:3235–3237.

    Article  PubMed  Google Scholar 

  • Cox, C. D., Malpass, J. R., Gordon, J., and Rosen, A. (2001). Synthesis of epibatidine isomers: Endo-5- and 6-(6′-chloro-3′-pyridyl-2-azabicyclo[2.2.1]heptanes. J. Chem. Soc., Perkin Trans. 1 2372–2379.

    Google Scholar 

  • Culver, P., Burch, M., Potenza, C., Wasserman, L., Fenical, W., and Taylor, P. (1985). Structure-activity relationships for the irreversible blockade of nicotinic receptor agonist sites by lophotoxin and congeneric diterpene lactones. Mol. Pharmacol. 28:436–444.

    PubMed  Google Scholar 

  • Dale, H. H. (1914). The action of certain esters and ethers of choline, and their relation to muscarine. J. Pharmacol. Exp. Ther. 6:147–190.

    Google Scholar 

  • Dale, H. H. (1954). The beginnings and the prospects of neurohumoral transmission. Pharmacol. Rev. 6:7–13.

    PubMed  Google Scholar 

  • D’Amour, K. A., and Casida, J. E. (1999). Desnitroimidacloprid and nicotine binding site in rat recombinant α4β2 neuronal nicotinic acetylcholine receptor. Pesticide Biochem. Physiol. 64:55–61.

    Article  Google Scholar 

  • Daly, J. W. (2003). Ernest Guenther award in chemistry of natural products. Amphibian skin: A remarkable source of biologically active arthropod alkaloids. J. Med. Chem. 46:445–452.

    Article  PubMed  Google Scholar 

  • Daly, J. W., Gupta, T. H., Padgett, W. L., and Pei, X.-F. (2000). 6β-Acyloxy(nor)tropanes: Affinities for antagonist/agonist binding sites on transfected and native muscarinic receptors. J. Med. Chem. 43:2514–2522.

    Article  PubMed  Google Scholar 

  • Daly, J. W., Nishizawa, Y., Edwards, M. W., Waters, J. A., and Aronstam, R. S. (1991a). Nicotinic receptor-elicited sodium flux in rat pheochromocytoma PC12 cells: Effects of agonists, antagonists, and noncompetitive blockers. Neurochem. Res. 16:489–500.

    Article  Google Scholar 

  • Daly, J. W., Nishizawa, Y., Padgett, W. L., Tokuyama, T., McCloskey, P. J., Waykole, L., Schultz, A. G., and Aronstam, R. S. (1991b). Decahydroquinoline alkaloids: Noncompetitive blockers for nicotinic acetylcholine receptor-channels in pheochromocytoma cells and Torpedo electroplax. Neurochem. Res. 16:1207–1212.

    Article  Google Scholar 

  • Daly, J. W., Nishizawa, Y., Padgett, W. L., Tokuyama, T., Smith, A. L., Holmes, A. B., Kibayashi, C., and Aronstam, R. S. (1991c). 5,8-Disubstituted indolizidines: A new class of noncompetitive blockers for nicotinic receptor-channels. Neurochem. Res. 16:1213–1218.

    Article  Google Scholar 

  • Damaj, M. I., Glassco, W., Aceto, M. D., and Martin, B. R. (1999). Antinociceptive and pharmacological effects of metanicotine, a selective nicotinic agonist. J. Pharmacol. Exp. Ther. 291:390–398.

    PubMed  Google Scholar 

  • Damaj, M. I., Glassco, W., Dukat, M., May, E. L., Glennon, R. A., and Martin, B. R. (1996). Pharmacology of novel nicotinic analogs. Drug Dev. Res. 38:177–187.

    Article  Google Scholar 

  • Davies, A. R. L., Hardick, D. J., Blagbrough, I. S., Potter, B. V. L., Wolsenholme, A. J., and Wonnacott, S. (1999). Characterization of the binding of [3H]methyllycaconitine: A new radioligand for labeling α7-type neuronal nicotinic acetylcholine receptors. Neuropharmacology 38:679–690.

    Article  PubMed  Google Scholar 

  • Davila-Garcia, M. I., Musachio, J. L., Perry, D. C., Xiao, Y., Horti, A., London, E. D., Dannals, R. F., and Kellar, K. J. (1997). [125I]IPH, an epibatidine analog, binds with high affinity to neuronal nicotinic cholinergic receptors. J. Pharmacol. Exp. Ther. 282:445–451.

    PubMed  Google Scholar 

  • Decker, M. W., Anderson, D. J., Brioni, J. D., Donnelly-Roberts, D. L., Diana, L., Kang, C. H., O’Neill, A. B., Piattoni-Kaplan, M., Swanson, S., and Sullivan, J. P. (1995a). Erysodine, a competitive antagonist at neuronal nicotinic acetylcholine receptors. Eur. J. Pharmacol. 280:79–89.

    Article  Google Scholar 

  • Decker, M. W., Brioni, J. D., Bannon, A. W., and Arneric, S. P. (1995b). Diversity of neuronal nicotinic acetylcholine receptors: Lessons from behavior and implications for CNS Thereutics. Life Sci. 56:545–570.

    Article  Google Scholar 

  • De Fiebre, C. M., Meyer, E. M., Henry, J. C., Muraskin, S. I., Kem, W. R., and Papke, R. L. (1995). Characterization of a series of anabaseine-derived compounds reveals that the 3-(4)-dimethylaminocinnamylidine derivative is a selective agonist at neuronal nicotinic α7/125I-α-bungarotoxin receptor subtypes. Mol. Pharmacol. 47:164–171.

    PubMed  Google Scholar 

  • Devlin, J. P., Edwards, O. E., Gorham, P. R., Hunter, H. R., Pike, R. K., and Stavric, B. (1977). Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NRC-44h. Can. J. Chem. 55:1367–1371.

    Google Scholar 

  • Dukat, M., Damaj, I. M., Young, R., Vann, R., Collins, A. C., Marks, M. J., Martin, B. R., and Glennon, R. A. (2002a). Functional diversity among 5-substituted nicotine analogs; in vitro and in vivo investigations. Eur. J. Pharmacol. 435:171–180.

    Article  Google Scholar 

  • Dukat, M., Dowd, M., Damaj, M. I., Martin, B., El-Zahabi, M. A., and Glennon, R. A. (1999). Synthesis, receptor binding and QSAR studies on 6-substituted nicotine derivatives as cholinergic ligands. Eur. J. Med. Chem. 34:31–40.

    Article  Google Scholar 

  • Dukat, M., El-Zahabi, M., Ferretti, G., Damaj, M. I., Martin, B. R., Young, R., and Glennon, R. A. (2002b). (−)-6-n-Propylnicotine antagonizes the antinociceptive effects of (−)-nicotine. Bioorg. Med. Chem. Lett. 12:3005–3007.

    Article  Google Scholar 

  • Dukat, M., Fredler, W., Dumas, D., Damaj, I., Martin, B. R., Rosecrans, J. A., James, J. R., and Glennon, R. A. (1996). Pyrrolidine-modified and 6-substituted analogs of nicotine: A structure-affinity investigation. Eur. J. Med. Chem. 31:875–888.

    Article  Google Scholar 

  • Eaton, J. B., Peng, J.-H., Schroeder, K. M., George, A. A., Fryer, J. D., Krishnan, C., Buhlman, L., Kuo, Y.-P., Steinlein, O., and Lukas, R. J. (2003). Characterization of human α4β2-nicotinic acetylcholine receptors stably and heterologously expressed in native nicotinic receptor-null SH-EP1 human epithelial cells. Mol. Pharmacol. 64:1283–1294.

    Article  PubMed  Google Scholar 

  • Efange, S. M. N., Tu, Z., von Hohenberg, K., Francesconi, L., Howell, R. C., Rampersad, M. V., Todaro, L. J., Papke, R. L., and Kung, M.-P. (2001). 2-(2-Piperidyl)- and 2-(2-pyrrolidyl)chromans as nicotine agonists: Synthesis and preliminary pharmacological characterization. J. Med. Chem. 44:4704–4715.

    Article  PubMed  Google Scholar 

  • Eldefrawi, A. T., Eldefrawi, M. E., Albuquerque, E. X. Oliveira, A. C., Mansour, N., Adler, M., Daly, J. W., Brown, G. B., Burgermeister, W., and Witkop, B. (1977). Perhydrohistrionicotoxin: A potential ligand for the ion conductance modulator of the acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A 74:2172–2176.

    PubMed  Google Scholar 

  • Elliott, R. L., Kopecka, H., Gunn, D. E., Lin, N.-H., Garvey, D. S., Ryther, K. B., Holladay, M. W., Anderson, D. J., Campbell, J. E., Sullivan, J. P., Buckley, M. J., Gunther, K. L., O’Neill, A. B., Decker, M. W., and Arneric, S. P. (1996). 2-(Aryloxymethyl)azacyclic analogues as novel nicotinic acetylcholine receptor (nAChR) ligands. Bioorg. Med. Chem. Lett. 6:2283–2288.

    Article  Google Scholar 

  • Elliott, R. L., Ryther, K. B., Anderson, D. J., Piattoni-Kaplan, M., Kuntzweiler, T. A., Donnelly-Roberts, D., Arneric, S. P., and Holladay, M. W. (1997). Novel 2-(2′-furo[3,2-b]pyridinyl)pyrrolidines: Potent neuronal nicotinic acetylcholine receptor ligands. Bioorg. Med. Chem. Lett. 7:2703–2708.

    Article  Google Scholar 

  • Elliott, R. L., Ryther, K. B., Anderson, D. J., Raszkiewicz, J. L., Campbell, J. E., Sullivan, J. P., and Garvey, D. S. (1995). Phenyl pyrrolidine analogues as potent nicotinic acetylcholine receptor (nAChR) ligands. Bioorg. Med. Chem. Lett. 5:991–996.

    Article  Google Scholar 

  • Ellis, J. L., Harman, D., Gonzalez, J., Spera, M. L., Liu, R., Shen, T. X., Wypij, D. M., and Zuo, F. (1999). Devlopment of muscarinic analgesics derived from epibatidine: Role of the M4 receptor subtype. J. Pharmacol. Exp. Ther. 288:1143–1150.

    PubMed  Google Scholar 

  • Erspamer, V., and Benati, O. (1953). Identification of murexine as β-[imidazolyl-(4)]-acryl-choline. Experientia 117:161–162.

    Google Scholar 

  • Evans, N. M., Bose, S., Benedetti, G., Zwart, R., Pearson, K. H., McPhie, G. I., Craig, P. J., Benton, J. P., Volsen, S. G., Sher, E., and Broad, L. M. (2003). Expression and functional characterization of a human chimeric nicotinic receptor with α6β4 properties. Eur. J. Pharmacol. 466:31–39.

    Article  PubMed  Google Scholar 

  • Fan, H., Scheffel, U. A., Rauseo, P., Xiao, Y., Dogan, A. S., Yokoi, F., Hilton, J., Kellar, K. J., Wong, D. F., and Musachio, J. L. (2001). [125/123I]5-Iodo-3-pyridyl ethers: Syntheses and binding to neuronal nicotinic acetylcholine receptors. Nucl. Med. Biol. 28:911–921.

    Article  PubMed  Google Scholar 

  • Felder, C. C., Bymaster, F. P., Ward, J., and DeLapp, N. (2000). Therapeutic opportunities for muscarinic receptors in the central nervous system. J. Med. Chem. 43:4333–4353.

    Article  PubMed  Google Scholar 

  • Fenical, W., Okuda, R. K., Bandurraga, M. M., Culver, P., and Jacobs, R. S. (1981). Lophotoxin: A novel neuromuscular toxin from pacific sea whips of the genus Lophogorgia. Science 212:1512–1514.

    PubMed  Google Scholar 

  • Ferretti, G., Dukat, M., Giannella, M., Piergentili, A., Pigini, M., Quaglia, W., Damaj, M. I., Martin, B. R., and Glennon, R. A. (2003). Binding of nicotine and homoazanicotine analogues at neuronal nicotinic acetylcholinergic (nACh) receptors. Bioorg. Med. Chem. Lett. 13:733–735.

    Article  PubMed  Google Scholar 

  • Fitch, R. W., Garraffo, H. M., Spande, T. F., Yeh, H. J. C., and Daly, J. W. (2003a). Bioassay-guided isolation of epiquinamide, a novel quinolizidine alkaloid and nicotinic agonist from an Ecuadoran poison frog, Epipedobates tricolor. J. Nat. Prod. 66:1345–1350.

    Article  Google Scholar 

  • Fitch, R. W., Pei, X.-F., Kaneko, Y., Gupta, T., Shi, D., Federova, I., and Daly, J. W. (2004). Homoepiboxidines: Further potent agonists for nicotinic receptors. Bioorg. Med. Chem. 12:179–190.

    Article  PubMed  Google Scholar 

  • Fitch, R. W., Xiao, Y., Kellar, K. J., and Daly, J. W. (2003b). Membrane potential fluorescence: A rapid and highly sensitive assay for nicotinic receptor channel function. Proc. Natl. Acad. Sci. U.S.A. 100:4909–4914.

    Article  Google Scholar 

  • Flammia, D., Dukat, M., Damaj, M. I., Martin, B., and Glennon, R. A. (1999). Lobeline: Structure-affinity investigation of nicotinic acetylcholinergic receptor binding. J. Med. Chem. 42:3726–3731.

    Article  PubMed  Google Scholar 

  • Folkers, K., and Major, R. T. (1937). Isolation of erythroidine, an alkaloid of curare action, from Erythrina americana Mill. J. Am. Chem. Soc. 59:1850–1851.

    Article  Google Scholar 

  • Francis, M. M., Cheng, E. Y., Weiland, G. A., and Oswald, R. E. (2001). Specific activation of the α7 nicotinic acetylcholine receptor by a quaternary analog of cocaine. Mol. Pharmacol. 60:71–79.

    PubMed  Google Scholar 

  • Francis, M. M., Vazquez, R. W., Papke, R. L., and Oswald, R. E. (2000). Subtype-selective inhibition of neuronal nicotinic acetylcholine receptors by cocaine is determined by the α4 subunits. Mol. Pharmacol. 58:109–119.

    PubMed  Google Scholar 

  • Fryer, J. D., and Lukas, R. J. (1999). Noncompetitive functional inhibition at diverse, human nicotinic acetylcholine receptor subtypes by bupropion, phencyclidine and ibogaine. J. Pharmacol. Exp. Ther. 288:88–92.

    PubMed  Google Scholar 

  • Garvey, D. S., Wasicak, J. T., Decker, M. W., Brioni, J. D., Buckley, M. J., Sullivan, J. P., Carrera, G. M., Holladay, M. W., Arneric, S. P., and Williams, M. (1994). Novel isoxazoles with interact with brain cholinergic channel receptors have intrinsic cognitive enhancing and anxiolytic activities. J. Med. Chem. 37:1055–1059.

    Article  PubMed  Google Scholar 

  • Gentry, C. L., and Lukas, R. J. (2001). Local anesthetics noncompetitively inhibit function of four distinct nicotinic acetylcholine receptor subtypes. J. Pharmacol. Exp. Ther. 299:1038–1048.

    PubMed  Google Scholar 

  • Ghelardini, C., Galeotti, N., Barlocco, D., and Bartolini, A. (1997). Antinociceptive profile of the new nicotinic agonist DBO-83. Drug Dev. Res. 40:251–258.

    Article  Google Scholar 

  • Ghelardini, C., Galeotti, N., Gualtieri, F., Bellucci, C., Manetti, D., Borea, P. A., and Bartolini, A. (1997). Antinociceptive property of the nicotinic agonist AG-4 in rodents. Drug Dev. Res. 41:1–9.

    Article  Google Scholar 

  • Glennon, R. A., and Dukat, M. (2000). Central nicotinic receptor ligands and pharmacophores. Pharm. Acta Helv. 74:103–114.

    Article  PubMed  Google Scholar 

  • Glick, S. D., Maisonneuve, I. M., Kitchen, B. A., and Fleck, M. W. (2002). Antagonism of α3β4 nicotinic receptors as a strategy to reduce opioid and stimulant self-administration. Eur. J. Pharmacol. 438:99–105.

    Article  PubMed  Google Scholar 

  • Gnädisch, D., London, E. D., Terry, P., Hill, G. R., and Mukhin, A. G. (1999). High affinity binding of [3H]epibatidine to rat brain membranes. NeuroReport 10:1631–1636.

    PubMed  Google Scholar 

  • Gohlke, H., Gündisch, D., Schwartz, S., Seitz, G., Tilotta, M. C., and Wegge, T. (2002). Synthesis and nicotinic binding studies on enantiopure diazine analogues of the novel (2-chloro-5-pyridyl)-9-azabicyclo[4.2.1]non-2-ene UB-165. J. Med. Chem. 45:1064–1072.

    Article  PubMed  Google Scholar 

  • Gohlke, H., Schwartz, S., Gundisch, D., Tilotta, M. C., Weber, A., Wegge, T., and Seitz, G. (2003). 3D QSAR analyses-guided rational design of novel ligands for the (α4)22)3 nicotinic acetylcholine receptor. J. Med. Chem. 46:2031–2048.

    Article  PubMed  Google Scholar 

  • Gopalakrishnan, M., Buisson, B., Touma, E., Giordano, T., Campbell, J. E., Hu, I. C., Donnelly-Roberts, D., Arneric, S. P., Bertrand, D., and Sullivan, J. P. (1995). Stable expression and pharmacological properties of the human α7 nicotinic acetylcholine receptor. Eur. J. Pharmacol. 290:237–246.

    Article  PubMed  Google Scholar 

  • Gopalakrishnan, M., Monteggia, L. M., Anderson, D. J., Molinari, E. J., Piattoni-Kaplan, M., Donnelly-Roberts, D., Arneric, S. P., and Sullivan, J. P. (1996). Stable expression, pharmacologic properties and regulation of the human neuronal nicotinic acetylcholine α4β2 receptor. J. Pharmacol. Exp. Ther. 276:289–297.

    PubMed  Google Scholar 

  • Grady, S. R., Meinerz, N. M., Cao, J., Reynolds, A. M., Picciotto, M. R., Bhangeux, J.-P., McIntosh, J. M., Marks, M. J., and Collins, A. C. (2001). Nicotinic agonists stimulate acetylcholine release from mouse interpeduncular nucleus: A function mediated by a different nAChR than dopamine release from striatum. J. Neurochem. 76:258–268.

    Article  PubMed  Google Scholar 

  • Guandalini, L., Dei, S., Gualtieri, F., Romanelli, M. N., Scapecchi, S., Teodori, E., and Varani, K. (2002). Synthesis of hexahydro-2-pyrindine ($=$ hexahydrocyclo-penta[c]pyridine) derivatives as conformationally restricted analogs of the nicotinic ligands arecolone and isoarecolone. Hev. Chim. Acta 85:96–107.

    Article  Google Scholar 

  • Gündisch, D., Kämpchen, T., Schwarz, S., Seitz, G., Siegl, J., and Wegge, T. (2002). Syntheses and evaluation of pyridazine and pyrimidine containing bioisoteres of (±)-pyrido[3.4-b]homotropane and pyrido-[3.4-b]tropane as novel nAChR ligands. Bioorg. Med. Chem. 10:1–9.

    Article  PubMed  Google Scholar 

  • Haefely, W. (1974). Effects of various nicotine-like agents in the cat superior cervical ganglion in situ. Naunyn-Schmiedeberg’s Arch. Pharmacol. 281:93–117.

    Article  Google Scholar 

  • Hardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T., and Wonnacott, S. (1996). Nudicauline and elatine as potent norditerpenoid ligands at rat neuronal α-bungarotoxin binding sites: Importance of the 2-(methylsuccinimido)benzoyl moiety for neuronal nicotinic acetylcholine receptor binding. J. Med. Chem. 39:4860–4866.

    Article  PubMed  Google Scholar 

  • Hayashi, E., Isogai, M., Kagawa, Y., Takayamagi, N., and Yamada, S. (1984). Neosurugatoxin, a specific antagonist of nicotinic acetylcholine receptors. J. Neurochem. 42:1491–1494.

    PubMed  Google Scholar 

  • Heidmann, T., Oswald, R. E., and Changeux, J.-P. (1983). Multiple sites of action for noncompetitive blockers on acetylcholine receptor rich membrane fragments from Torpedo marmorata. Biochemistry 22:3112–3127.

    Article  PubMed  Google Scholar 

  • Hilmas, C., Pereira, E. F. R., Alkondon, M., Rassoulpour, A., Schwarcz, R., and Albuquerque, E. X. (2001). The brain metabolite kynurenic acid inhibits α7 nicotinic receptor activity and increases non-α7 nicotinic receptor expression: Physiopathological implications. J. Neurosci. 21:7463–7473.

    PubMed  Google Scholar 

  • Hodgson, D. M., Maxwell, C. R., Wisedale, R., Matthews, I. R., Carpenter, K. J., Dickenson, A. H., and Wonnacott, S. (2001). 6-Substituted 2-azabicyclo[2.2.1]hept-5-enes by nitrogen-directed radical rearrangement: Synthesis of an epibatidine analogue with high binding affinity at the nicotinic acetylcholine receptor. J. Chem. Soc., Perkin Trans. 1 2001:3150–3158.

    Google Scholar 

  • Holladay, M. W., Bai, H., Li, Y., Lin, N.-H., Daanen, J. F., Ryther, K. B., Wasicak, J. T., Kincaid, J. F., He, Y., Hettinger, A.-M., Huang, P., Anderson, D. J., Bannon, A. W., Buckley, M. J., Campbell, J. E., Donnelly-Roberts, D. L., Gunther, K. L., Kim, D. J. B., Kuntzweiler, T. A., Sullivan, J. P., Decker, M. W., and Arneric, S. P. (1998a). Structure-activity studies related to ABT-594, a potent nonopioid analgesic agent: Effect of pyridine and azetidine ring substitutions of nicotinic acetylcholine receptor binding affinity and analgesic activity in mice. Bioorg. Med. Chem. Lett. 8:2797–2802.

    Article  Google Scholar 

  • Holladay, M. W., Dart, M. J., and Lynch, J. K. (1997). Neuronal nicotinic acetylcholine receptors as targets for drug discovery. J. Med. Chem. 40:4169–4194.

    Article  PubMed  Google Scholar 

  • Holladay, M. W., Wasicak, J. T., Lin, N.-H., He, Y., Ryther, K. B., Bannon, A. W., Buckley, M. J., Kim, D. J. B., Decker, M. W., Anderson, D. J., Campbell, J. E., Kuntzweiler, T. A., Donnelly-Roberts, D. L., Piattoni-Kaplan, M., Briggs, C. A., Williams, M., and Arneric, S. P. (1998b). Identification and initial structure-activity relationships of (R)-5-(2-azetidinylmethoxy)-2-chloropyridine (ABT-594)., a potent, orally active, non-opiate analgesic agent acting via neuronal nicotinic acetylcholine receptors. J. Med. Chem. 41:407–412.

    Article  Google Scholar 

  • Houghtling, R. A., Davila-Garcia, M. I., and Kellar, K. J. (1995). Characterization of (±)-[3H]epibatidine binding to nicotinic cholinergic receptors in rat and human brain. Mol. Pharmacol. 48:280–287.

    PubMed  Google Scholar 

  • Imming, P., Klaperski, P., Stubbs, M. T., Seitz, G., and Gündisch, D. (2001). Syntheses and evaluation of halogenated cystisine derivatives and of bioisosteric thiocytisine as potent and selective nAChR ligands. Eur. J. Med. Chem. 36:375–388.

    Article  PubMed  Google Scholar 

  • Ing, H. R. (1931). Cytisine Part I. J. Chem. Soc. 2195–2203.

  • Ismail, K. A., and Bergmeier, S. C. (2002). Structure-activity studies with ring E analogues of methyllycaconitine. Synthesis and evaluation of enantiopure isomers of selective antagonist at the α3 nicotinic receptor. Eur. J. Med. Chem. 37:469–474.

    Article  PubMed  Google Scholar 

  • Jacyno, J. M., Harwood, J. S., Lin, N. H., Cambell, J. E., Sullivan, J. P., and Holladay, M. W. (1996). Lycaconitine revisited: Partial synthesis and neuronal nicotinic acetylcholine receptor affinities. J. Nat. Prod. 59:707–709.

    Article  PubMed  Google Scholar 

  • Jensen, A. A., Mikkelsen, I., Frolund, B., Bräuner-Osborne, H., Falch, E., and Krogsgaard-Larsen, P. (2003). Carbamoylcholine homologs: Novel and potent agonists at neuronal nicotinic acetylcholine receptors. Mol. Pharmacol. 64:865–875.

    Article  PubMed  Google Scholar 

  • Jonnala, R. R., Graham, J. H. III, Terry, A. V., Jr., Beach, J. W., Young, J. A., and Buccafusco, J. J. (2003). Relative levels of cytoprotection produced by analogs of choline and the role of α7-nicotinic acetylcholine receptors. Synapse 47:262–269.

    Article  PubMed  Google Scholar 

  • Kanne, D. B., and Abood, L. G. (1988). Synthesis and biological characterization of pyridohomotropanes. Structure-activity relationships of conformationally restricted nicotinoids. J. Med. Chem. 31:506–509.

    Article  PubMed  Google Scholar 

  • Karig, G., Large, J. M., Sharples, C. G., Sutherland, A., Gallagher, T., and Wonnacott, S. (2003). Synthesis and nicotinic binding of novel phenyl derivatives of UB-165. Identifying factors associated with α7 selectivity. Bioorg. Med. Chem. Lett. 13:2825–2828.

    Article  PubMed  Google Scholar 

  • Kassiou, M., Bottlaender, M., Loc’h, C., Dolle, F., Musachio, J. L., Coulon, C., Ottaviani, M., Dannals, R. F., and Maziere, B. (2002). Pharmacological evaluation of a Br-76 analog of epibatidine: A potent ligand for studying brain nicotinic acetylcholine receptors. Synapse 45:95–104.

    Article  PubMed  Google Scholar 

  • Kem, W. R., Mahnir, V. M., Papke, R. L., and Lingle, C. J. (1997). Anabaseine is a potent agonist on muscle and neuronal alpha-bungarotoxin-sensitive nicotinic receptors. J. Pharmacol. Exp. Ther. 283:979–992.

    PubMed  Google Scholar 

  • Kem, W. R. (1972). A study of the occurrence of anabaseine in Paranemertes and other nermertines. Toxicon 9:23–32.

    Article  Google Scholar 

  • Kim, K. D., Lerner-Marmaarosh, N., Saraswati, M., Kende, A. S., and Abood, L. G. (1994). 5-Isothiocyanonicotine: A high affinity irreversible ligand for brain nicotinic receptors. Biochem. Pharmacol. 47:1965–1967.

    Article  PubMed  Google Scholar 

  • Kim, K. H., Lin, N.-H., and Anderson, D. J. (1996). Quantitative structure-activity relationships of nicotinic analogues as neuronal nicotinic acetylcholine receptor ligands. Bioorg. Med. Chem. 4:2211–2217.

    Article  PubMed  Google Scholar 

  • King, H. (1946). Botanical origin of tube-curare. Nature 158:515–516.

    Google Scholar 

  • Kloog, Y., Kalir, A., Bachman, O., and Sokolosky, M. (1980). Specific binding of [3H]phencyclidines to membrane preparation. Possible interaction with the cholinergic ionophore. FEBS Lett. 109:125–128.

    Article  PubMed  Google Scholar 

  • Koren, A. O., Horti, A. G., Kimes, A., Scheffel, U., Ravert, H. T., London, E. D., and Dannals, R. F. (1997). Synthesis and Evaluation of benzo-Analogs of Epibatidine as Potential nAChR Ligands for PET Studies. XIIth International Symposium on Radiopharmaceutical Chemistry, Uppsala, Sweden, p. 518.

  • Kosuge, T., Tsuji, K., Hirai, K.,Yamaquchi, O., Kamoto, T., and Iitake, (1981). Isolation and structure determination of a new marine toxin, neosurugatoxin, from the Japanese ivory shell, Babylonia Japonica. Tetrahedron Lett. 22:3417–3420.

    Article  Google Scholar 

  • Krause, R. M., Buisson, B., Bertrand, S., Corringer, P.-J., Galzi, J.-L., Changeux, J.-P., and Bertrand, D. (1998). Ivermectin: A positive allosteric effector of the α7 neuronal nicotinic acetylcholine receptor. Mol. Pharmacol. 53:283–294.

    PubMed  Google Scholar 

  • Krow, G. R., Cheung, O. H., Hu, Z., Huang, Q., Hutchinson, J., Liu, N., Nguyen, K. T., Ulrich, S., Yuan, J., Xiao, Y., Wypij, D. M., Zuo, F., and Carroll, P. J. (1999). Nitrogen bridge homoepibatidines. Syn-6- and syn-5(6-chloro-3-pyridyl)isoquinuclidines. Tetrahedron 55:7747–7756.

    Article  Google Scholar 

  • Krow, G. R., Yuan, J., Fang, Y., Meyer, M. D., Anderson, D. J., Campbell, J. E., and Carroll, P. J. (2000a). Synthesis of 3- and 5-endo-(6-chloro-3-pyridoxy)-methyl-2- azabicyclo[2.2.0]hexane and 3-endo-(6-chloro-3-pyridoxy)-methyl-2-azabicyclo[2.2.0]hex-5-ene. ABT-594 analogs. Tetrahedron 56:9227–9232.

    Article  Google Scholar 

  • Krow, G. R., Yuan, J., Huang, Q., Meyer, M. D., Anderson, D. J., Campbell, J. E., and Carroll, P. J. (2000b). Synthesis of 5- and 6-(6-chloro-3-pyridyl)-2-azabicyclo[2.2.0]hexanes. Epibatidine analogs. Tetrahedron 56:9233–9239.

    Article  Google Scholar 

  • Lands, A. M., and Archer, S. (1961). A study of the nicotinic action of 3-phenyltropane and related compounds. J. Med. Pharmacol. Chem. 2:449–460.

    Article  Google Scholar 

  • Latli, B., D’Amour, K., and Casida, J. E. (1999). Novel and potent 6-chloro-3-pyridinyl ligands for the α4β2 neuronal nicotinic acetylcholine receptor. J. Med. Chem. 42:2227–2234.

    Article  PubMed  Google Scholar 

  • Lee, M., Dukat, M., Liao, L., Flammia, D., Damaj, M. I., Martin, B., and Glennon, R. A. (2002). A comparison of the binding of three series of nicotinic ligands. Bioorg. Med. Chem. Lett. 12:1989–1992.

    Article  PubMed  Google Scholar 

  • Lin, N.-H., Abreo, M. A., Gunn, D. E., Lebold, S. A., Lee, E. L., Wasicak, J. T., Hettinger, A.-M., Daanen, J. F., Garvey, D. S., Campbell, J. E., Sullivan, J. P., Williams, M., and Arneric, S. P. (1999). Structure-activity studies on a novel series of cholinergic channel activators based on a heteroaryl ether framework. Bioorg. Med. Chem. Lett. 9:2747–2752.

    Article  PubMed  Google Scholar 

  • Lin, N.-H., Carrera, G. M., Jr., and Anderson, D. J. (1994). Synthesis and evaluation of nicotine analogs as neuronal nicotinic acetylcholine receptor ligands. J. Med. Chem. 37:3542–3553.

    Article  PubMed  Google Scholar 

  • Lin, N.-H., Dong, L., Bunnelle, W. H., Anderson, D. J., and Meyer, M. D. (2002). Synthesis and biological evaluation of pyridine-modified analogues of 3-(2-aminoethoxy)pyridine as novel nicotinic receptor ligands. Bioorg. Med. Chem. Lett. 12:3321–3324.

    Article  PubMed  Google Scholar 

  • Lin, N.-H., Gunn, D. E., Li, Y., He, Y., Bai, H., Ryther, K. B., Kuntzweiler, T., Donnelly-Roberts, D. L., Anderson, D. J., Campbell, J. E., Sullivan, J. P., Arneric, S. P., and Holladay, M. W. (1998). Synthesis and structure-activity relationships of pyridine-modified analogs of 3-[2-((S)-pyrrolidinyl)methoxy]pyridine, A-84543, a potent nicotinic acetylcholine receptor agonist. Bioorg. Med. Chem. Lett. 8:249–254.

    Article  PubMed  Google Scholar 

  • Lin, N.-H., Gunn, D. E., Ryther, K. B., Garvey, D. S., Donnelly-Roberts, D. L., Decker, M. W., Brioni, J. D., Buckley, M. J., Rodrigues, A. D., Marsh, K. G., Anderson, D. J., Buccafusco, J. J., Prendergast, M. A., Sullivan, J. P., Williams, M., Arneric, S. P., and Holladay, M. W. (1997). Structure-activity studies on 2-methyl-3-(2(S)-pyrrolidinylmethoxy)pyridine (ABT-089): An orally bioavailable 3-pyridyl ether nicotinic acetylcholine receptor ligand with cognition-enhancing properties. J. Med. Chem. 40:385–390.

    Article  PubMed  Google Scholar 

  • Lin, N.-H., Li, Y., He, Y., Holladay, M. W., Kuntzweiler, T., Anderson, D. J., Campbell, J. E., and Arneric, S. P. (2001). Synthesis and structure-activity relationships of 5-substituted pyridine analogues of 3-[2-((S)-pyrrolidinyl)methoxy]pyridine, A-84543: A potent nicotinic receptor ligand. Bioorg. Med. Chem. Lett. 11:631–633.

    Article  PubMed  Google Scholar 

  • Lippielo, P. M., and Fernandes, K. G. (1986). The bindings of 1-[3H]nicotine to a single class of high affinity sites in rat brain. Mol. Pharmacol. 29:448–454.

    PubMed  Google Scholar 

  • Lloyd, G. K., and Williams, M. (2000). Neuronal nicotinic acetylcholine receptors as novel drug targets. J. Pharmacol. Exp. Ther. 292:461–467.

    PubMed  Google Scholar 

  • Luetje, C. W., Wada, K., Rogers, S., Abramson, S. N., Tsuji, K., Heinemann, S., and Patrick, J. (1990). Neurotoxins distinguish between different neuronal nicotinic acetylcholine receptor subunit compositions. J. Neurochem. 55:632–640.

    PubMed  Google Scholar 

  • Lukas, R. J. (1989). Pharmacological distinctions between functional nicotinic acetylcholine receptors on the PC12 rat pheochromocytoma and the TE671 human medulloblastoma. J. Pharmacol. Exp. Ther. 251:175–182.

    PubMed  Google Scholar 

  • Macallan, D. R. E., Lunt, G. G., Wonnacott, S., Swanson, K. L., Rapoport, H., and Albuquerque, E. X. (1988). Methyllycaconitine and (+)-anatoxin-a differentiate between nicotinic receptors in vertebrate and invertebrate nervous systems. FEBS Lett. 226:357–363.

    Article  PubMed  Google Scholar 

  • Macor, J. E., Gurley, D., Lanthorn, T., Loch, J., Mack, R. A., Mullen, G., Tran, O., Wright, N., and Gordon, J. C. (2001). The 5HT3 antagonist tropisetron (ICS 205–930). is a potent and selective alpha7 nicotinic receptor partial agonist. Biorg. Med. Chem. Lett. 11:319–321.

    Article  Google Scholar 

  • Maelicke, A., and Albuquerque, E. X. (2000). Allosteric modulation of nicotinic acetylcholine receptors as a treatment strategy for Alzheimer’s disease. Eur. J. Pharmacol. 393:165–170.

    Article  PubMed  Google Scholar 

  • Malpass, J. R., Hemmings, D. A., Wallis, A. L., Fletcher, S. R., and Patel, S. (2001). Synthesis and nicotinic acetylcholine binding properties of epibatidine homologues: Homoepibatidine and dihomoepibatidine. J. Chem. Soc., Perkin Trans. 1 2001:1044–1050.

    Google Scholar 

  • Manetti, D., Bartolini, A., Borca, P. A., Belluci, C., Dei, S., Ghelardini, C., Gualteri, F., Romanelli, M. N., Scapecchi, S., Teodori, E., and Varani, K. (1999). Hybridized and isosteric analogues of N′-acetyl-N4-dimethylpiperazinium iodide (ADMP) and N′-phenyl-N4-dimethylpiperazinium iodide (DMPP) with central nicotinic action. Bioorg. Med. Chem. 7:457–465.

    Article  PubMed  Google Scholar 

  • Marks, M. J., Whiteaker, P., Calcaterra, J., Stitzel, J. A., Bullock, A. E., Grady, S. R., Picciotto, M. R., Changeux, J.-P., and Collins, A. C. (1999). Two pharmacologically distinct components of nicotinic receptor-mediated rubidium efflux in mouse brain require the β2 subunit. J. Pharmacol. Exp. Ther. 289:1090–1103.

    PubMed  Google Scholar 

  • Marks, M. J., Whiteaker, P., Grady, S. R., Picciotto, M. R., McIntosh, J. M., and Collins, A. C. (2002). Characterization of [125I]epibatidine binding and nicotinic agonist-mediated 86Rb+ efflux in interpeduncular nucleus and inferior colliculus of β2 null mutant mice. J. Neurochem. 81:1102–1115.

    Article  PubMed  Google Scholar 

  • Matsubayashi, H., II, Alkondon, M., Pereira, E. F. R., Swanson, K. L., and Albuquerque, E. X. (1998). Strychnine: A potent competitive antagonist of α-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal neurons. J. Pharmacol. Exp. Ther. 284:904–913.

    PubMed  Google Scholar 

  • McIntosh, J. M., Santos, A. D., and Olivera, B. M. (1999). Conus peptides targeted to specific nicotinic acetylreceptor subtypes. Annu. Rev. Biochem. 68:59–88.

    Article  PubMed  Google Scholar 

  • Meyer, M. D., Decker, M. W., Rueter, L. E., Anderson, D. J., Dart, M. J., Kim, K. H., Sullivan, J. P., and Williams, M. (2000). The identification of novel structural compound classes exhibiting high affinity for neuronal nicotinic acetylcholine receptors and analgesic efficacy in preclinical models of pain. Eur. J. Pharmacol. 393:171–177.

    Article  PubMed  Google Scholar 

  • Meyer, E. M., deFiebre, C. M., Hunter, B. E., Simpkins, C. E., Franworth, N., and deFiebre, F. E. C. (1994). Effects of anabaseine-related analogs on rat brain nicotinic receptor binding and on avoidance behavior. Drug Dev. Res. 31:127–134.

    Article  Google Scholar 

  • Middleton, R. E., Strnad, N. P., and Cohen, J. B. (1999). Photoaffinity labeling the Torpedo nicotinic acetylcholine receptor with [3H]tetracaine, a nondesensitizing noncompetitive antagonist. Mol. Pharmacol. 56:290–299.

    PubMed  Google Scholar 

  • Moltzen, E. K., and Bjornholm, B. (1995). Medicinal chemistry of muscarinic agonists: Developments since 1990. Drugs Future 20:37–54.

    Google Scholar 

  • Mullen, G., Napier, J., Balestra, M., DeCory, T., Hale, G., Macor, J., Mack, R., Loch, J., III, Wu, E., Kover, A., Verhoest, P., Sampognaro, A., Phillips, E., Zhu, Y., Murray, R., Griffith, R., Blosser, J., Gurley, D., Machulskis, A., Zongrone, J., Rosen, A., and Gordon, J. (2000). (−)-Spiro[1-azabicyclo[2.2.2]octane-3,5′-oxazolidin-2′-one], a conformationally restricted analogue of acetylcholine, is a highly selective full agonist at the α7 nicotinic acetylcholine receptor. J. Med. Chem. 43:4045–4050.

    Article  PubMed  Google Scholar 

  • Nielsen, S. F., Nielsen, E. O ., Olsen, G. M., Liljefors, T., and Peters, D. (2000). Novel potent ligands for the central nicotinic acetylcholine receptor: Synthesis, receptor binding, and 3D-QSAR analysis. J. Med. Chem. 43:2217–2226.

    Article  PubMed  Google Scholar 

  • Olesen, P. B., Swedberg, M. D. B., and Rimvall, K. (1998). 3-(5-Alkylamino-4-isoxazolyl)-1,2,5,6-tetrahydropyridines: A novel class of central nicotinic receptor ligands. Bioorg. Med. Chem. 6:1623–1629.

    Article  PubMed  Google Scholar 

  • Olivo, H. F., Colby, D. A., and Hemenway, M. S. (1999). Syntheses of new open-ring and homo-epibatidine analogues from tropinone. J. Org. Chem. 64:4966–4968.

    Article  PubMed  Google Scholar 

  • Olesen, P. H., Tonder, J. E., Hansen, J. B., Hansen, H. C., and Rimvall, K. (2000). Bioisosteric replacement strategy for the synthesis of 1-azacyclic compounds with high affinity for the central nicotinic cholinergic receptors. Bioorg. Med. Chem. 8:1443–1450.

    Article  PubMed  Google Scholar 

  • Pabreza, L. A., Dhawau, S., and Kellar, K. J. (1991). [3H]Cytisine binding to nicotinic cholinergic receptors in brain. Mol. Pharmacol. 39:9–12.

    PubMed  Google Scholar 

  • Papke, R. L., Bencherif, M., and Lippiello, P. (1996). An evaluation of neuronal nicotinic acetylcholine receptor activation by quaternary nitrogen compounds indicates that choline is selective for the alpha 7 subtype. Neurosci. Lett. 213:201–204.

    PubMed  Google Scholar 

  • Papke, R. L., and Porter-Papke, J. W. (2002). Comparative pharmacology of rat and human alpha7 nAChR conducted with net charge analysis. Br. J. Pharmacol. 137:49–61.

    Article  PubMed  Google Scholar 

  • Papke, R. L., Porter-Papke, J. K., and Rose, G. M. (2004). Activity of α7-selective agonists at nicotinic and serotonin 5HT3 receptors expressed in Xenopus oocytes. Bioorg. Med. Chem. Lett. 14:1849–1853.

    Article  PubMed  Google Scholar 

  • Papke, R. L., and Thinschmidt, J. S. (1998). The correction of alpha 7 nicotinic acetylcholine receptor concentration-response relationships in Xenopus oocytes. Neurosci. Lett. 256:163–166.

    Article  PubMed  Google Scholar 

  • Pedersen, S. E. (1995). Site-selective photoaffinity labeling of the Torpedo californica nicotinic acetylcholine receptor by azide derivatives of ethidium bromide. Mol. Pharmacol. 47:1–9.

    PubMed  Google Scholar 

  • Pei, X. F., Gupta, T. H., Badio, B., Padgett, W. L., and Daly, J. W. (1998). 6β-Acetoxynortropane: A potent muscarinic agonist with apparent selectivity toward M2-receptors. J. Med. Chem. 41:2047–2055.

    Article  PubMed  Google Scholar 

  • Pereira, E. F. R., Alkondon, M., Reinhardt, S., Maelicke, A., Peng, X., Lindstrom, J., Whiting, P., and Albuquerque, E. X. (1994). Physostigmine and galanthamine characterize the presence of the novel binding site on the α4β2 subtype of neuronal nicotinic acetylcholine receptor stably expressed in fibroblasts cells. J. Pharmacol. Exp. Ther. 270:768–778.

    PubMed  Google Scholar 

  • Rádl, S., Hezký, P., Hafner, W., Budinský, M., and Hejnová, L. (2000). Synthesis and binding studies of some epibatidine analogues. Bioorg. Med. Chem. Lett. 10:55–58.

    Article  PubMed  Google Scholar 

  • Romanelli, M. N., and Gualtieri, F. (2003). Cholinergic nicotinic receptors: Competitive ligands, allosteric modulators, and their potential applications. Med. Res. Rev. 23:393–426.

    Article  PubMed  Google Scholar 

  • Romanelli, M. N., Manetti, D., Scapecchi, S., Borea, P. A., Dei, S., Bartolini, A., Ghelardini, C., Gualtieri, F., Guandalini, L., and Varani, K. (2001). Structure-affinity relationships of a unique nicotinic ligand: N1-Dimethyl-N4-phenylpiperazinium iodide (DMPP). J. Med. Chem. 44:3946–3955.

    Article  PubMed  Google Scholar 

  • Sacaan, A. I., Reid, R. T., Santori, E. M., Adams, P., Correa, L. D., Mahaffy, L. S., Bleicher, L., Cosford, N. D. P., Stauderman, K. A., McDonald, I. A., Rao, T. S., and Lloyd, G. K. (1997). Pharmacological characterization of SIB-1765F: A novel cholinergic ion channel agonist. J. Pharmacol. Exp. Ther. 280:373–383.

    Google Scholar 

  • Saji, H., Watanabe, A., Magata, Y., Ohmomo, Y., Kiyono, Y., Yamada, Y., Iida, Y., Yonekura, Y., Konishi, J., and Yokoyama, A. (1997). Synthesis and characterization of radioiodinated (S)-5-iodonicotine: A new ligand for potential imaging of brain nicotinic cholinergic receptors by single photon emission computed tomography. Chem. Pharmacol. Bull. 45:284–290.

    Google Scholar 

  • Sakurai, Y., Takano, Y., Kohjimoto, Y., Kenji, K., and Hiro, O. (1982). Enhancement of [3H]dopamine release and its [3H]metabolites in rat striatum by nicotinic drugs. Brain Res. 242:99–106.

    Article  PubMed  Google Scholar 

  • Saraswati, M., Lerner-Marmarosh, N., Wang, D. X., Shen, S.-S., Sharma, V., and Abood, L. G. (1994). Structure-activity studies of N,N-dialkyl and cycloalkyl carbamate esters of dimethylethanolamine and choline with nicotinic and muscarinic receptors. Drug Dev. Res. 31:142–146.

    Article  Google Scholar 

  • Schmidt, J. D. (2000). Exploring the nature of molecular recognition in nicotinic acetylcholine receptors. Curr. Med. Chem. 7:749–800.

    PubMed  Google Scholar 

  • Schrattenholz, A., Pereira, E. F. R., Roth, U., Weber, K.-H., Albuquerque, E. X., and Maelicke, A. (1996). Agonist responses of neuronal nicotinic acetylcholine receptors are potentiated by a novel class of allosterically acting ligands. Mol. Pharmacol. 49:1–6.

    PubMed  Google Scholar 

  • Seerden, J.-P. G., Tulp, M. Th. M., Scheeren, H. W., and Kruse, C. G. (1998). Synthesis and structure-activity data of some new epibatidine analogues. Bioorg. Med. Chem. 6:2103–2110.

    Article  PubMed  Google Scholar 

  • Sharples, C. G. V., Karig, G., Simpson, G. L., Spencer, J. A., Wright, E., Millar, N. S., Wonnacott, S., and Gallagher, T. (2002). Synthesis and pharmacological characterization of novel analogues of the nicotinic acetylcholine receptor agonist (±)-UB-165. J. Med. Chem. 45:3235–3245.

    Article  PubMed  Google Scholar 

  • Shaw, K.-P., Aracava, Y., Akaike, A., Daly, J. W., Rickett, D. L., and Albuquerque, E. X. (1985). The reversible cholinesterase inhibitor physostigmine has channel-blocking and agonist effects on the acetylcholine receptor-ion channel complex. Mol. Pharmacol. 28:527–538.

    PubMed  Google Scholar 

  • Sihver, W., Nordberg, A., Långström, B., Mukhin, A. G., Koren, A. O., Kimes, A. S., and London, E. D. (2000). Development of ligands for in vivo imaging of cerebral nicotinic receptors. Behav. Brain. Res. 113:143–157.

    Article  PubMed  Google Scholar 

  • Simsek, R., Chang-Fong, J., Lee, M., Dukat, M., Damaj, M. I., Martin, B. R., and Glennon, R. A. (2003). Quaternary ammonium 3-(aminoethoxy)pyridines as antinociceptive agents. Bioorg. Med. Chem. Lett. 13:2917–2920.

    Article  PubMed  Google Scholar 

  • Singh, S., Avor, K. S., Pouw, B., Seale, T. W., and Basmadjian, G. P. (1999). Design and synthesis of isooxazole containing bioisosteres of epibatidine as potent nicotinic acetylcholine receptor agonists. Chem. Pharmacol. Bull. 47:1501–1505.

    Google Scholar 

  • Slater, Y. E., Houlihan, L. M., Maskell, P. D., Exley, R., Bermúdez, I., Lukas, R. J., Valdivia, A. C., and Cassels, B. K. (2003). Halogenated cystisine derivatives as agonists at human neuronal nicotinic acetylcholine receptor subtypes. Neuropharmacology 44:503–515.

    Article  PubMed  Google Scholar 

  • Small, G., Erkinjuntti, T., Kurz, A., Lilienfeld, S. (2003). Galantamine in the treatment of cognitive decline in patients with vascular dementia or Alzheimer’s disease with cerebrovascular disease. CNS Drugs 17:905–914.

    PubMed  Google Scholar 

  • Smith, B. P., Tyler, M. J., Kaneko, T., Garraffo, H. M., Spande, T. F., and Daly, J. W. (2002). Evidence for biosynthesis of pseudophrynamine alkaloids by an Australian myobatrachid frog (Pseudophryne) and sequestration of dietary pumiliotoxins. J. Nat. Prod. 65:439–447.

    Article  PubMed  Google Scholar 

  • Souccar, C., Varanda, W. A., Aronstam, R. S., Daly, J. W., and Albuquerque, E. X. (1984a). Interactions of gephyrotoxin with the acetylcholine receptor-ionic channel complex. II. Enhancement of desensitization. Mol. Pharmacol. 25:395–400.

    Google Scholar 

  • Souccar, C., Varanda, W. A., Daly, J. W., and Albuquerque, E. X. (1984b). Interactions of gephyrotoxin with the acetylcholine receptor-ionic channel complex. I. Blockade of the ionic channel. Mol. Pharmacol. 25:384–394.

    Google Scholar 

  • Spande, T. F., Garraffo, H. M., Edwards, M. W., Yeh, H. J. C., Pannell, L., and Daly, J. W. (1992). Epibatidine: A novel (chloropyridyl)azabicycloheptane with potent analgesic activity from an Ecuadoran poison frog. J. Am. Chem. Soc. 114:3475–3478.

    Article  Google Scholar 

  • Spang, J. E., Bertrand, S., Westera, G., Patt, J. T., Schubiger, P. A., and Bertrand, D. (2000). Chemical modification of epibatidine causes a switch from agonist to antagonist and modifies its selectivity for neuronal nicotinic acetylcholine receptors. Chem. Biol. 7:545–555.

    Article  PubMed  Google Scholar 

  • Spivak, C. E., Gund, T. M., Liang, R. F., and Waters, J. A. (1986). Structural and electronic requirements for potent agonists at a nicotinic receptor. Eur. J. Pharmacol. 120:127–131.

    Article  PubMed  Google Scholar 

  • Spivak, C. E., Maleque, M. A., Oliveira, A. C., Masukawa, L. M., Tokuyama, T., Daly, J. W., and Albuquerque, E. X. (1982). Actions of the histrionicotoxins at the ion channel of the nicotinic acetylcholine receptor and at the voltage-sensitive ion channels of muscle membranes. Mol. Pharmacol. 21:351–361.

    PubMed  Google Scholar 

  • Spivak, C. E., Waters, J., Witkop, B., and Albuquerque, E. X. (1983). Potencies and channel properties induced by semirigid agonists at frog nicotinic acetylcholine receptors. Mol. Pharmacol. 23:337–343.

    PubMed  Google Scholar 

  • Stauderman, K. A., Mahaffy, L. S., Akong, M., Velicelebi, G., Chavez-Noriega, L. E., Crona, J. H., Johnson, E. C., Elliott, K. J., Gillespie, A., Reid, R. T., Adams, P., Harpold, M. M., and Corey-Naeve, J. (1998). Characterization of human recombinant neuronal nicotinic acetylcholine receptor subunit combinations α2β4, α3β4 and α4β4 stably expressed in HEK293 cells. J. Pharmacol. Exp. Ther. 284:777–789.

    PubMed  Google Scholar 

  • Storch, A., Schrattenholz, A., Cooper, J. C., Abdel Ghani, E. M., Gutbrod, O., Weber, K.-H., Reinhardt, S., Lobron, C., Hermsen, B., Soskic, V., Pereira, E. F. R., Albuquerque, E. X., Methfessel, C., and Maelicke, A. (1995). Physostigmine, galanthamine and codeine act as noncompetitive nicotinic agonists on clonal rat pheochromocytoma cells. Eur. J. Pharmacol. 290:207–219.

    Article  PubMed  Google Scholar 

  • Sutherland, A., Gallagher, T., Sharples, C. G., and Wonnacott, S. (2003). Synthesis of two fluoro analogues of the nicotinic acetylcholine receptor agonist UB-165. J. Org. Chem. 68:2475–2478.

    Article  PubMed  Google Scholar 

  • Swanson, K. L., Allen, C. N., Aronstam, R. S., Rapoport, H., and Albuquerque, E. X. (1986). Molecular mechanisms of the potent and stereospecific nicotinic receptor agonist (+)-anatoxin-a. Mol. Pharmacol. 29:250–257.

    PubMed  Google Scholar 

  • Tabachnick, I. I. A., Roth, F. E., Mershon, J., Rubin, A. A., Eckhardt, E. T., and Govier, W. M. (1958). Enzymic and pharmacologic comparison of imidazoleacetylcholine with two related choline esters, murexine and dihydromurexine. J. Pharmacol. Exp. Ther. 123:98–103.

    PubMed  Google Scholar 

  • Tonder, J. E., and Olesen, P. H. (2001). Agonists at the α4β2 nicotinic acetylcholine receptors: Structure-activity relationships and molecular modelling. Curr. Med. Chem. 8:651–674.

    PubMed  Google Scholar 

  • Tonder, J. E., Hansen, J. B., Begtrup, M., Pettersson, I., Rimvall, K., Christensen, B., Ehrbar, U., and Olesen, P. H. (1999). Improving the nicotinic pharmacophore with a series of (isoxazole)methylene-1-azacyclic compounds: Synthesis, structure-activity relationship, and molecular modeling. J. Med. Chem. 42:4970–4980.

    Article  PubMed  Google Scholar 

  • Toma, L., Quadrelli, P., Bunnelle, W. H., Anderson, D. J., Meyer, M. D., Cignarella, G., Gelain, A., and Barlocco, D. (2002). 6-Chloropyridazin-3-yl derivatives active as nicotinic agents: Synthesis, binding, and modeling studies. J. Med. Chem. 45:4011–4017.

    Article  PubMed  Google Scholar 

  • Tsuda, Y., and Sano, T. (1996). Erythrina and related alkaloids. In Cordell, G. A. (ed.), The Alkaloids, Vol. 48, Academic Press, New York. pp. 249–337.

    Google Scholar 

  • Ullrich, T., Krich, S., Binder, D., Mereiter, K., Anderson, D. J., Meyer, M. D., and Pyerin, M. (2002). Conformationally constrained nicotines: Polycyclic, bridged, and spiro-annulated analogues as novel ligands for the nicotinic acetylcholine receptor. J. Med. Chem. 45:4047–4054.

    Article  PubMed  Google Scholar 

  • Vernier, J.-M., El-Abdellaoui, H., Holsenback, H., Cosford, N. D. P., Bleicher, L., Barker, G., Bontempi, B., Chavez-Noriega, L., Menzaghi, F., Rao, T. S., Reid, R., Sacaan, A. I., Suto, C., Washburn, M., Lloyd, G. K., and McDonald, I. A. (1999). 4-[[2-(1-Methyl-2-pyrrolidinyl)ethyl]thio]-phenol hydrochloride (SIB-1553A): A novel cognitive enhancer with selectivity for neuronal nicotinic acetylcholine receptors. J. Med. Chem. 42:1684–1686.

    Article  PubMed  Google Scholar 

  • Wang, D. X., Booth, H., Lerner-Marmarosh, N., Osdene, T. S., and Abood, L. G. (1998). Structure-activity relationships for nicotine analogs comparing competition for [3H]nicotine binding and psychotropic potency. Drug Dev. Res. 45:10–16.

    Article  Google Scholar 

  • Wang, F., Gerzanich, V., Wells, G. B., Anand, R., Peng, X., Keyser, K., and Lindstrom, J. (1996). Assembly of human neuronal nicotinic receptor α5 subunits with α3, β2, and β4 subunits. J. Biol. Chem. 271:17656–17665.

    PubMed  Google Scholar 

  • Wang, G. K., Molinaro, S., and Schmidt, J. (1978). Ligand responses of α-bungarotoxin binding sites from skeletal muscle and optic lobe of the chick. J. Biol. Chem. 253:8507–8512.

    PubMed  Google Scholar 

  • Ward, J. M., Cockcroft, V. B., Lunt, G. G., Smillie, F. S., and Wonnacott, S. (1990). Methyllycaconitine: A selective probe for neuronal α-bungarotoxin binding sites. FEBS Lett. 270:45–48.

    Article  PubMed  Google Scholar 

  • Ward, J. S., Merritt, L., Bymaster, F. P., and Calligaro, D. O. (1994). Isoarecolones and arecolones: Selective central nicotinic agonists that cross the blood brain barrier. Bioorg. Med. Chem. Lett. 4:573–578.

    Article  Google Scholar 

  • Warnick, J. E., Jessup, P. J., Overman, L. E., Eldefrawi, M. E., Nimit, Y., Daly, J. W., and Albuquerque, E. X. (1982). Pumiliotoxin-C and synthetic analogues: A new class of nicotinic antagonists. Mol. Pharmacol. 22:565–573.

    PubMed  Google Scholar 

  • Waters, J. A., Spivak, C. E., Hermsmeier, M., Yadav, J. S., Liang, R. F., and Gund, T. M. (1988). Synthesis, pharmacology and molecular modeling studies of semirigid, nicotinic agonists. J. Med. Chem. 31:545–554.

    Article  PubMed  Google Scholar 

  • Wei, Z. L., Petukhov, P. A., Xiao, Y., Tückmantel, W., George, C., Kellar, K. J., and Kozikowski, A. P. (2003a). Synthesis, nicotinic acetylcholine receptor binding affinities, and molecular modeling of constrained epibatidine analogues. J. Med. Chem. 46:921–924.

    Article  Google Scholar 

  • Wei, Z.-L., Xiao, Y., George, C., Kellar, K. J., and Kozikowski, A. P. (2003b). Functionalization of the alicyclic skeleton of epibatidine: Synthesis and nicotinic acetylcholine receptor binding affinities of epibatidine analogues. Org. Biomol. Chem. 1:3878–3881.

    Article  Google Scholar 

  • Wheeler, J. W., Olubajo, O., Storm, C. B., and Duffield, R. M. (1981). Anabaseine: Venom alkaloid of Aphaenogaster ants. Science 211:1051–1052.

    Google Scholar 

  • Wilkins, L. H., Jr., Greinevich, V. P., Ayers, J. T., Crooks, P. A., and Dwoskin, L. P. (2003). N-n-Alkylnicotinium analogs, a novel class of nicotinic receptor antagonists: Interaction with α4β2 and α7 neuronal nicotinic receptors. J. Pharmacol. Exp. Ther. 304:400–410.

    Article  PubMed  Google Scholar 

  • Wonnacott, S., Jackman, S., Swanson, K. L., Rapoport, H., and Albuquerque, E. X. (1991). Nicotinic pharmacology of anatoxin analogs. II. Side chain structure-activity relationships at neuronal nicotinic ligand binding sites. J. Pharmacol. Exp. Ther. 259:387–391.

    PubMed  Google Scholar 

  • Wonnacott, S., Swanson, K. L., Albuquerque, E. X., Huby, N. J. S., Thompson, P., and Gallagher, T. (1992). Homoanatoxin: A potent analogue of anatoxin-a. Biochem. Pharmacol. 43:419–423.

    Article  PubMed  Google Scholar 

  • Wright, E., Gallagher, T., Sharples, C. G. V., and Wonnacott, S. (1997). Synthesis of UB-165: A novel nicotinic ligand and anatoxin-a/epibatidine hybrid. Bioorg. Med. Chem. Lett. 7:2867–2870.

    Article  Google Scholar 

  • Xu, R., Bai, D., Chu, G., Tao, J., and Zhu, X. (1996). Synthesis and analgesic activity of epibatidine analogues. Bioorg. Med. Chem. Lett. 6:279–282.

    Article  Google Scholar 

  • Xu, R., Dwoskin, L. P., Grinevich, V. P., Deaciuc, G., and Crooks, P. A. (2001). Neuronal nicotinic acetylcholine receptor binding affinities of boron-containing nicotine analogues. Bioorg. Med. Chem. Lett. 11:1245–1248.

    Article  PubMed  Google Scholar 

  • Xu, R., Dwoskin, P., Grinevich, V., Sumithran, S. P., and Crooks, P. A. (2002). Synthesis and evaluation of conformationally restricted pyridine n-alkylated nicotine analogs as nicotinic acetylcholine receptor antagonists. Drug Dev. Res. 55:173–186.

    Article  Google Scholar 

  • Zhang, C., Gyermek, L., and Trudell, M. L. (1997). Synthesis of optically pure epibatidine analogs: (1R,2R,5S)-2β-(2-chloro-5-pyridinyl)-8-azabicyclo[3.2.1]octane and (1R,2S,5S)-2α-(2-chloro-5-pyridinyl)-8-azabicyclo[3.2.1]octane from (−)-cocaine. Tetrahedron Lett. 38:5619–5622.

    Article  Google Scholar 

  • Zhang, N., Tomizawa, M., and Casida, J. E. (2003). 5-Azidoepibatidine: An exceptionally potent photoaffinity ligand for neuronal α4β2 and α7 nicotinic acetylcholine receptors. Bioorg. Med. Chem. Lett. 13:525–527.

    Article  PubMed  Google Scholar 

  • Zhang, X., Gong, Z.-H., Fasth, K. J., Långström, B., and Nordberg, A. (1998). Interaction of the nicotinic agonist (R, S)-3-pyridyl-1-methyl-2-(3-pyridyl)-azetidine (MPA) with nicotinic acetylcholine receptor subtypes expressed in cell lines and rat cortex. Neurochem. Int. 32:435–441.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Daly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daly, J.W. Nicotinic Agonists, Antagonists, and Modulators From Natural Sources. Cell Mol Neurobiol 25, 513–552 (2005). https://doi.org/10.1007/s10571-005-3968-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-005-3968-4

Key Words

Navigation