Skip to main content
Log in

Single-Detector Simultaneous Optical Mapping of V m and [Ca2+]i in Cardiac Monolayers

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Simultaneous mapping of transmembrane voltage (V m) and intracellular Ca2+ concentration (Cai) has been used for studies of normal and abnormal impulse propagation in cardiac tissues. Existing dual mapping systems typically utilize one excitation and two emission bandwidths, requiring two photodetectors with precise pixel registration. In this study we describe a novel, single-detector mapping system that utilizes two excitation and one emission band for the simultaneous recording of action potentials and calcium transients in monolayers of neonatal rat cardiomyocytes. Cells stained with the Ca2+-sensitive dye X-Rhod-1 and the voltage-sensitive dye Di-4-ANEPPS were illuminated by a programmable, multicolor LED matrix. Blue and green LED pulses were flashed 180° out of phase at a rate of 488.3 Hz using a custom-built dual bandpass excitation filter that transmitted blue (482 ± 6 nm) and green (577 ± 31 nm) light. A long-pass emission filter (>605 nm) and a 504-channel photodiode array were used to record combined signals from cardiomyocytes. Green excitation yielded Cai transients without significant crosstalk from V m. Crosstalk present in V m signals obtained with blue excitation was removed by subtracting an appropriately scaled version of the Cai transient. This method was applied to study delay between onsets of action potentials and Cai transients in anisotropic cardiac monolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bachtel, A. D., R. A. Gray, J. M. Stohlman, E. B. Bourgeois, A. E. Pollard, and J. M. Rogers. A novel approach to dual excitation ratiometric optical mapping of cardiac action potentials with Di-4-ANEPPS using pulsed LED excitation. IEEE Trans. Biomed. Eng. 58:2120–2126, 2011.

    Article  PubMed  Google Scholar 

  2. Badie, N., and N. Bursac. Novel micropatterned cardiac cell cultures with realistic ventricular microstructure. Biophys. J. 96:3873–3885, 2009.

    Article  PubMed  CAS  Google Scholar 

  3. Bers, D. M. Cardiac excitation–contraction coupling. Nature 415:198–205, 2002.

    Article  PubMed  CAS  Google Scholar 

  4. Bian, W., and L. Tung. Structure-related initiation of reentry by rapid pacing in monolayers of cardiac cells. Circ. Res. 98:e29–e38, 2006.

    Article  PubMed  CAS  Google Scholar 

  5. Bray, M. A., and J. P. Wikswo. Examination of optical depth effects on fluorescence imaging of cardiac propagation. Biophys. J. 85:4134–4145, 2003.

    Article  PubMed  CAS  Google Scholar 

  6. Bursac, N., K. K. Parker, S. Iravanian, and L. Tung. Cardiomyocyte cultures with controlled macroscopic anisotropy: a model for functional electrophysiological studies of cardiac muscle. Circ. Res. 91:e45–e54, 2002.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, P. S., B. Joung, T. Shinohara, M. Das, Z. Chen, and S. F. Lin. The initiation of the heart beat. Circ. J. 74:221–225, 2010.

    Article  PubMed  CAS  Google Scholar 

  8. Choi, B. R., and G. Salama. Simultaneous maps of optical action potentials and calcium transients in guinea-pig hearts: mechanisms underlying concordant alternans. J. Physiol. 529 Pt 1:171–188, 2000.

    Article  PubMed  CAS  Google Scholar 

  9. de Diego, C., R. K. Pai, F. Chen, L. H. Xie, J. De Leeuw, J. N. Weiss, and M. Valderrabano. Electrophysiological consequences of acute regional ischemia/reperfusion in neonatal rat ventricular myocyte monolayers. Circulation 118:2330–2337, 2008.

    Article  PubMed  Google Scholar 

  10. Efimov, I. R., V. V. Fedorov, B. Joung, and S. F. Lin. Mapping cardiac pacemaker circuits: methodological puzzles of the sinoatrial node optical mapping. Circ. Res. 106:255–271, 2010.

    Article  PubMed  CAS  Google Scholar 

  11. Efimov, I. R., V. P. Nikolski, and G. Salama. Optical imaging of the heart. Circ. Res. 95:21–33, 2004.

    Article  PubMed  CAS  Google Scholar 

  12. Entcheva, E., Y. Kostov, E. Tchernev, and L. Tung. Fluorescence imaging of electrical activity in cardiac cells using an all-solid-state system. IEEE Trans. Biomed. Eng. 51:333–341, 2004.

    Article  PubMed  Google Scholar 

  13. Entcheva, E., S. N. Lu, R. H. Troppman, V. Sharma, and L. Tung. Contact fluorescence imaging of reentry in monolayers of cultured neonatal rat ventricular myocytes. J. Cardiovasc. Electrophysiol. 11:665–676, 2000.

    Article  PubMed  CAS  Google Scholar 

  14. Evertson, D. W., M. R. Holcomb, M. C. Eames, M. A. Bray, V. Y. Sidorov, J. Xu, H. Wingard, H. M. Dobrovolny, M. C. Woods, D. J. Gauthier, and J. P. Wikswo. High-resolution high-speed panoramic cardiac imaging system. IEEE Trans. Biomed. Eng. 55:1241–1243, 2008.

    Article  PubMed  Google Scholar 

  15. Fast, V. G. Simultaneous optical imaging of membrane potential and intracellular calcium. J. Electrocardiol. 38(Suppl):107–112, 2005.

    Article  PubMed  Google Scholar 

  16. Fast, V., E. R. Cheek, A. E. Pollard, and R. E. Ideker. Effects of electrical shocks on Cai2+ and Vm in myocyte cultures. Circ. Res. 94:1589–1597, 2004.

    Article  PubMed  CAS  Google Scholar 

  17. Fast, V. G., and R. E. Ideker. Simultaneous optical mapping of transmembrane potential and intracellular calcium in myocyte cultures. J. Cardiovasc. Electrophysiol. 11:547–556, 2000.

    Article  PubMed  CAS  Google Scholar 

  18. Fast, V., and A. Kleber. Microscopic conduction in cultured cardiac strands of neonatal rat heart cells measured with voltage-sensitive dyes. Circ. Res. 73:914–925, 1993.

    PubMed  CAS  Google Scholar 

  19. Hayashi, H., Y. Shiferaw, D. Sato, M. Nihei, S. F. Lin, P. S. Chen, A. Garfinkel, J. N. Weiss, and Z. Qu. Dynamic origin of spatially discordant alternans in cardiac tissue. Biophys. J. 92:448–460, 2007.

    Article  PubMed  CAS  Google Scholar 

  20. Hayashi, Y., M. M. Zviman, J. G. Brand, J. H. Teeter, and D. Restrepo. Measurement of membrane potential and [Ca2+]i in cell ensembles: application to the study of glutamate taste in mice. Biophys. J. 71:1057–1070, 1996.

    Article  PubMed  CAS  Google Scholar 

  21. Himel H. D., IV, G. Bub, Y. Yue, and N. El-Sherif. Early voltage/calcium uncoupling predestinates the duration of ventricular tachyarrhythmias during ischemia/reperfusion. Heart Rhythm 6:1359–1365, 2009.

    Article  Google Scholar 

  22. Holcomb, M. R., M. C. Woods, I. Uzelac, J. P. Wikswo, J. M. Gilligan, and V. Y. Sidorov. The potential of dual camera systems for multimodal imaging of cardiac electrophysiology and metabolism. Exp. Biol. Med. (Maywood) 234:1355–1373, 2009.

    Article  CAS  Google Scholar 

  23. Hwang, G. S., H. Hayashi, L. Tang, M. Ogawa, H. Hernandez, A. Y. Tan, H. Li, H. S. Karagueuzian, J. N. Weiss, S. F. Lin, and P. S. Chen. Intracellular calcium and vulnerability to fibrillation and defibrillation in Langendorff-perfused rabbit ventricles. Circulation 114:2595–2603, 2006.

    Article  PubMed  CAS  Google Scholar 

  24. Hyatt, C. J., S. F. Mironov, M. Wellner, O. Berenfeld, A. K. Popp, D. A. Weitz, J. Jalife, and A. M. Pertsov. Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns. Biophys. J. 85:2673–2683, 2003.

    Article  PubMed  CAS  Google Scholar 

  25. Iravanian, S., and D. J. Christini. Optical mapping system with real-time control capability. Am. J. Physiol. Heart Circ. Physiol. 293:H2605–H2611, 2007.

    Article  PubMed  CAS  Google Scholar 

  26. Katra, R. P., and K. R. Laurita. Cellular mechanism of calcium-mediated triggered activity in the heart. Circ. Res. 96:535–542, 2005.

    Article  PubMed  CAS  Google Scholar 

  27. Lakatta, E. G., V. A. Maltsev, and T. M. Vinogradova. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ. Res. 106:659–673, 2010.

    Article  PubMed  CAS  Google Scholar 

  28. Lakireddy, V., G. Bub, P. Baweja, A. Syed, M. Boutjdir, and N. El-Sherif. The kinetics of spontaneous calcium oscillations and arrhythmogenesis in the in vivo heart during ischemia/reperfusion. Heart Rhythm 3:58–66, 2006.

    Article  PubMed  Google Scholar 

  29. Laurita, K. R., and A. Singal. Mapping action potentials and calcium transients simultaneously from the intact heart. Am. J. Physiol. Heart Circ. Physiol. 280:H2053–H2060, 2001.

    PubMed  CAS  Google Scholar 

  30. Lee, P., C. Bollensdorff, T. A. Quinn, J. P. Wuskell, L. M. Loew, and P. Kohl. Single-sensor system for spatially-resolved, continuous and multi-parametric optical mapping of cardiac tissue. Heart Rhythm 8:1482–1491, 2011.

    Article  PubMed  Google Scholar 

  31. Lou, Q., V. V. Fedorov, A. V. Glukhov, N. Moazami, V. G. Fast, and I. R. Efimov. Transmural heterogeneity and remodeling of ventricular excitation–contraction coupling in human heart failure. Circulation 123:1881–1890, 2011.

    Article  PubMed  Google Scholar 

  32. Maltsev, V. A., and E. G. Lakatta. Dynamic interactions of an intracellular Ca2+ clock and membrane ion channel clock underlie robust initiation and regulation of cardiac pacemaker function. Cardiovasc. Res. 77:274–284, 2008.

    Article  PubMed  CAS  Google Scholar 

  33. Maruyama, M., B. Joung, L. Tang, T. Shinohara, Y. K. On, S. Han, E. K. Choi, D. H. Kim, M. J. Shen, J. N. Weiss, S. F. Lin, and P. S. Chen. Diastolic intracellular calcium-membrane voltage coupling gain and postshock arrhythmias: role of purkinje fibers and triggered activity. Circ. Res. 106:399–408, 2010.

    Article  PubMed  CAS  Google Scholar 

  34. McSpadden, L. C., R. D. Kirkton, and N. Bursac. Electrotonic loading of anisotropic cardiac monolayers by unexcitable cells depends on connexin type and expression level. Am. J. Physiol. Cell. Physiol. 297:C339–C351, 2009.

    Article  PubMed  CAS  Google Scholar 

  35. Mironov, S. F., F. J. Vetter, and A. M. Pertsov. Fluorescence imaging of cardiac propagation: spectral properties and filtering of optical action potentials. Am. J. Physiol. Heart Circ. Physiol. 291:H327–H335, 2006.

    Article  PubMed  CAS  Google Scholar 

  36. Omichi, C., S. T. Lamp, S. F. Lin, J. Yang, A. Baher, S. Zhou, M. Attin, M. H. Lee, H. S. Karagueuzian, B. Kogan, Z. Qu, A. Garfinkel, P. S. Chen, and J. N. Weiss. Intracellular Ca dynamics in ventricular fibrillation. Am. J. Physiol. Heart Circ. Physiol. 286:H1836–H1844, 2004.

    Article  PubMed  CAS  Google Scholar 

  37. Pedrotty, D. M., R. Y. Klinger, N. Badie, S. Hinds, A. Kardashian, and N. Bursac. Structural coupling of cardiomyocytes and noncardiomyocytes: quantitative comparisons using a novel micropatterned cell pair assay. Am. J. Physiol. Heart Circ. Physiol. 295:H390–H400, 2008.

    Article  PubMed  CAS  Google Scholar 

  38. Priori, S. G., and S. R. Chen. Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. Circ. Res. 108:871–883, 2011.

    Article  PubMed  CAS  Google Scholar 

  39. Raman, V., A. E. Pollard, and V. G. Fast. Shock-induced changes of Ca(i)2+ and Vm in myocyte cultures and computer model: dependence on the timing of shock application. Cardiovasc. Res. 73:101–110, 2007.

    Article  PubMed  CAS  Google Scholar 

  40. Rohr, S., and B. M. Salzberg. Multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures: assessing electrical behavior, with microsecond resolution, on a cellular and subcellular scale. Biophys. J. 67:1301–1315, 1994.

    Article  PubMed  CAS  Google Scholar 

  41. Salama, G., and S. M. Hwang. Simultaneous optical mapping of intracellular free calcium and action potentials from Langendorff perfused hearts. Curr. Protoc. Cytom. 12:12.17.11–12.17.32, 2009.

    Google Scholar 

  42. Salama, G., and S. M. Hwang. Simultaneous optical mapping of intracellular free calcium and action potentials from Langendorff perfused hearts. Curr. Protoc. Cytom. Chapter 12:Unit 12.17, 2009.

  43. Walton, R. D., D. Benoist, C. J. Hyatt, S. H. Gilbert, E. White, and O. Bernus. Dual excitation wavelength epifluorescence imaging of transmural electrophysiological properties in intact hearts. Heart Rhythm 7:1843–1849, 2010.

    Article  PubMed  Google Scholar 

  44. Walton, R. D., and O. Bernus. Computational modeling of cardiac dual calcium–voltage optical mapping. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009:2827–2830, 2009.

    PubMed  Google Scholar 

  45. Warren, M., J. F. Huizar, A. G. Shvedko, and A. V. Zaitsev. Spatiotemporal relationship between intracellular Ca2+ dynamics and wave fragmentation during ventricular fibrillation in isolated blood-perfused pig hearts. Circ. Res. 101:e90–e101, 2007.

    Article  PubMed  CAS  Google Scholar 

  46. Wu, S., J. N. Weiss, C. C. Chou, M. Attin, H. Hayashi, and S. F. Lin. Dissociation of membrane potential and intracellular calcium during ventricular fibrillation. J. Cardiovasc. Electrophysiol. 16:186–192, 2005.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by American Heart Association predoctoral fellowships to Nima Badie (No. 0715178U) and Luke McSpadden (No. 0715288U), and NIH grant R01HL093711.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Bursac.

Additional information

Associate Editor Nathalie Virag oversaw the review of this article.

James A. Scull and Luke C. McSpadden contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scull, J.A., McSpadden, L.C., Himel, H.D. et al. Single-Detector Simultaneous Optical Mapping of V m and [Ca2+]i in Cardiac Monolayers. Ann Biomed Eng 40, 1006–1017 (2012). https://doi.org/10.1007/s10439-011-0478-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0478-z

Keywords

Navigation