Skip to main content

Advertisement

Log in

A Wavelet Packet-Based Algorithm for the Extraction of Neural Rhythms

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Neural rhythms are associated with different brain functions and pathological conditions. These rhythms are often clinically relevant for purposes of diagnosis or treatment, though their complex, time-varying features make them difficult to isolate. The wavelet packet transform has proven itself to be versatile and effective with respect to resolving signal features in both time and frequency. We propose a signal analysis technique, called neural rhythm extraction (NRE) that incorporates wavelet packet analysis along with a threshold-based scheme for separating rhythmic neural features from non-rhythmic ones. We applied NRE to rat in vitro intracellular recordings and human scalp electroencephalogram (EEG) signals, and were able to isolate and classify individual neural rhythms in signals containing large amplitude spikes and other artifacts. NRE is capable of discriminating signal features sharing similar time or frequency localization, as well as extracting low-amplitude, low-power rhythms otherwise masked by spectrally dominant signal components. The algorithm allows for independent retention and reconstruction of rhythmic features, which may serve to enhance other analysis techniques such as independent component analysis (ICA), and aid in application-specific tasks such as detection, classification or tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Azimi-Sadjadi M. R., D. Yao, Q. Huang, G. J. Dobeck. Underwater target classification using wavelet packets and neural networks. IEEE Trans. Neural Netw. 11(3):784–794, 2000. doi:10.1109/72.846748

    Article  PubMed  CAS  Google Scholar 

  2. Basar E., C. Basar-Eroglu, S. Karakas, M. Schurmann. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int. J. Psychophysiol. 39(2–3):241–248, 2001

    Article  PubMed  CAS  Google Scholar 

  3. Bendat J. S., A. G. Piersol. Random Data Analysis and Measurement Procedures. 3rd ed. New York: John Wiley & Sons, Inc., 2000

    Google Scholar 

  4. Buzsaki G., D. L. Buhl, K. D. Harris, J. Csicsvari, B. Czeh, A. Morozov. Hippocampal network patterns of activity in the mouse. Neuroscience 116(1):201–211, 2003. doi:10.1016/S0306-4522(02)00669-3

    Article  PubMed  CAS  Google Scholar 

  5. Buzsaki G., A. Draguhn. Neuronal oscillations in cortical networks. Science 304(5679):1926–1929, 2004. doi:10.1126/science.1099745

    Article  PubMed  CAS  Google Scholar 

  6. Canolty R. T., E. Edwards, S. S. Dalal, M. Soltani, S. S. Nagarajan, H. E. Kirsch, M. S. Berger, N. M. Barbaro, R. T. Knight. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313(5793):1626–1628, 2006. doi:10.1126/science.1128115

    Article  PubMed  CAS  Google Scholar 

  7. Chang S. G., B. Yu, M. Vetterli. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9(9):1532–1546, 2000. doi:10.1109/83.862633

    Article  PubMed  CAS  Google Scholar 

  8. Cody, M. A. The wavelet packet transform. Dr. Dobb’s J. 19(4):44–46, 50, 52, 54, 100, 1994.

  9. Coifman R. R., M. V. Wickerhauser. Entropy-based algorithms for best basis selection. IEEE Trans. Inform. Theor. 38(2):713–718, 1992. doi:10.1109/18.119732

    Article  Google Scholar 

  10. Daubechies, I. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41(7):909–996, 1988. doi:10.1002/cpa.3160410705

    Article  Google Scholar 

  11. Demanuele C., C. J. James, E. J. Sonuga-Barke. Distinguishing low frequency oscillations within the 1/f spectral behaviour of electromagnetic brain signals. Behav. Brain Funct. 3:62, 2007. doi:10.1186/1744-9081-3-62

    Article  PubMed  Google Scholar 

  12. Derchansky M., S. S. Jahromi, M. Mamani, D. S. Shin, A. Sik, P. L. Carlen. Transition to seizures in the isolated immature mouse hippocampus: a switch from dominant phasic inhibition to dominant phasic excitation. J. Physiol. 586(2):477–494, 2008. doi:10.1113/jphysiol.2007.143065

    Article  PubMed  CAS  Google Scholar 

  13. Donoho D. L., I. M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90:1200–1224, 1995. doi:10.2307/2291512

    Article  Google Scholar 

  14. Faisal A. A., L. P. Selen, D. M. Wolpert. Noise in the nervous system. Nat. Rev. Neurosci. 9(4):292–303, 2008. doi:10.1038/nrn2258

    Article  PubMed  CAS  Google Scholar 

  15. Faure P., H. Korn. A nonrandom dynamic component in the synaptic noise of a central neuron. PNAS 94(12):6506–6511, 1997. doi:10.1073/pnas.94.12.6506

    Article  PubMed  CAS  Google Scholar 

  16. Garcia C., G. Zikos, G. Tziritas. Wavelet packet analysis for face recognition. Image Vis. Comput. 18:289–297, 2000. doi:10.1016/S0262-8856(99)00056-6

    Article  Google Scholar 

  17. Hammond C., H. Bergman, P. Brown. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 30(7):357–364, 2007. doi:10.1016/j.tins.2007.05.004

    Article  PubMed  CAS  Google Scholar 

  18. Hess-Nielsen N., M. V. Wickerhauser. Wavelets and time–frequency analysis. Proc. IEEE 84(4):523–540, 1996. doi:10.1109/5.488698

    Article  Google Scholar 

  19. Hyvarinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3):626–634, 1999. doi:10.1109/72.761722

    Article  PubMed  CAS  Google Scholar 

  20. Hyvarinen A., E. Oja. A fast fixed-point algorithm for independent component analysis. Neural Comput. 9(7):1483–1492, 1997. doi:10.1162/neco.1997.9.7.1483

    Article  Google Scholar 

  21. Hyvarinen A., E. Oja. Independent component analysis: algorithms and applications. Neural Netw. 13(4–5):411–430, 2000. doi:10.1016/S0893-6080(00)00026-5

    Article  PubMed  CAS  Google Scholar 

  22. Jacobson G. A., K. Diba, A. Yaron-Jakoubovitch, Y. Oz, C. Koch, I. Segev, Y. Yarom. Subthreshold voltage noise of rat neocortical pyramidal neurones. J. Physiol. 564(Pt 1):145–160, 2005. doi:10.1113/jphysiol.2004.080903

    Article  PubMed  CAS  Google Scholar 

  23. James C. J., C. W. Hesse. Independent component analysis for biomedical signals. Physiol. Meas. 26(1):R15–39, 2005. doi:10.1088/0967-3334/26/1/R02

    Article  PubMed  Google Scholar 

  24. Jawerth B., W. Sweldens. An overview of wavelet based multiresolution analyses. SIAM Rev. 36(3):377–412, 1994. doi:10.1137/1036095

    Article  Google Scholar 

  25. John, E. R. The neurophysics of consciousness. Brain Res. Rev. 39(1):1–28, 2002. doi:10.1016/S0165-0173(02)00142-X

    Article  PubMed  Google Scholar 

  26. Khosravani H., C. R. Pinnegar, J. R. Mitchell, B. L. Bardakjian, P. Federico, P. L. Carlen. Increased high-frequency oscillations precede in vitro low-Mg seizures. Epilepsia 46(8):1188–1197, 2005. doi:10.1111/j.1528-1167.2005.65604.x

    Article  PubMed  Google Scholar 

  27. Klausberger T., P. J. Magill, L. F. Marton, J. D. Roberts, P. M. Cobden, G. Buzsaki, P. Somogyi. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421(6925):844–848, 2003. doi:10.1038/nature01374

    Article  PubMed  CAS  Google Scholar 

  28. Krishnaveni V., S. Jayaraman, L. Anitha, K. Ramadoss. Removal of ocular artifacts from EEG using adaptive thresholding of wavelet coefficients. J. Neural Eng. 3(4):338–346, 2006. doi:10.1088/1741-2560/3/4/011

    Article  PubMed  CAS  Google Scholar 

  29. Le Van Quyen M., I. Khalilov, Y. Ben-Ari. The dark side of high-frequency oscillations in the developing brain. Trends Neurosci. 29(7):419–427, 2006. doi:10.1016/j.tins.2006.06.001

    Article  CAS  Google Scholar 

  30. Mallat, S. G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7):674–693, 1989. doi:10.1109/34.192463

    Article  Google Scholar 

  31. Meyer F. G., A. Z. Averbuch, J.-O. Stromberg. Fast adaptive wavelet packet image compression. IEEE Trans. Image Process. 9(5):792–800, 2000. doi:10.1109/83.841526

    Article  PubMed  CAS  Google Scholar 

  32. Nunez P. L., R. Srinivasan. Electric Fields of the Brain: The Neurophysics of EEG. 2nd ed. New York: Oxford University Press, 2006, pp 5–19

    Google Scholar 

  33. Sakuranaga M., Y. Ando, K. Naka. Dynamics of the ganglion cell response in the catfish and frog retinas. J. Gen. Physiol. 90(2):229–259, 1987. doi:10.1085/jgp.90.2.229

    Article  PubMed  CAS  Google Scholar 

  34. So P., J. T. Francis, T. I. Netoff, B. J. Gluckman, S. J. Schiff. Periodic orbits: a new language for neuronal dynamics. Biophys. J. 74(6):2776–2785, 1998

    Article  PubMed  CAS  Google Scholar 

  35. Tikkanen, P. E. Nonlinear wavelet and wavelet packet denoising of electrocardiogram signal. Biol. Cybern. 80(4):259–267, 1999. doi:10.1007/s004220050523

    Article  PubMed  CAS  Google Scholar 

  36. Urrestarazu E., R. Chander, F. Dubeau, J. Gotman. Interictal high-frequency oscillations (100–500 Hz) in the intracerebral EEG of epileptic patients. Brain 130(Pt 9):2354–2366, 2007. doi:10.1093/brain/awm149

    Article  PubMed  Google Scholar 

  37. Walczak B., D. L. Massart. Noise suppression and signal compression using the wavelet packet transform. Chemometr. Intell. Lab. Syst. 36(2):81–94. 1997, doi:10.1016/S0169-7439(96)00077-9

    Article  CAS  Google Scholar 

  38. Wilcoxon, F. Individual comparisons by ranking methods. Biometrics Bull. 1(6):80–83, 1945. doi:10.2307/3001968

    Article  Google Scholar 

  39. Zaghloul K. A., K. Boahen, J. B. Demb. Different circuits for ON and OFF retinal ganglion cells cause different contrast sensitivities. J. Neurosci. 23(7):2645–2654, 2003

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Martin del Campo and the EEG Lab at the Toronto Western Hospital for providing human EEG data to analyze. This work has been funded by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Institutes of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Osbert C. Zalay or Berj L. Bardakjian.

Appendix

Appendix

The wavelet transform10 is the correlation of a signal, x(t), with a mother wavelet function, ψ(t), that is shifted and scaled, yielding wavelet coefficients c σ,τ :

$$ c_{{\sigma ,\tau }} = \frac{1} {{{\sqrt \sigma }}}{\int\limits_{ - \infty }^\infty {x(t)\psi {\left( {\frac{{t - \tau }} {\sigma }} \right)}dt} }. $$
(A.1)

If discrete scaling and translation are applied such that σ = 2j and τ = 2j k, where k and j are integers, then a basis of orthonormal wavelet functions for L 2(R) can be obtained30:

$$ \psi _{{j,k}} = {\sqrt {2^{{ - j}} } }\psi (2^{{ - j}} t - k). $$
(A.2)

Restating the coefficients in terms of j and k, the signal can be represented analytically as a summation of wavelet coefficients and basis functions:

$$ x(t) = {\sum\limits_{j = - \infty }^\infty {{\sum\limits_{k = - \infty }^\infty {c_{{j,k}} \psi _{{j,k}} } }} }. $$
(A.3)

Practical implementation of the discrete wavelet transform (DWT) is accomplished using a quadrature mirror filter (QMF) cascade.10,30 This requires the basis functions have compact support and the signal have finite energy and bandwidth. Let ϕ(t) be a lowpass scaling function associated with the wavelet function ψ(t), such that the following expressions hold:

$$ \phi (t) = {\sqrt 2 }{\sum\limits_k {h_{k} \phi (2t - k)} } $$
(A.4)
$$ \psi (t) = {\sqrt 2 }{\sum\limits_k {g_{k} \phi (2t - k)} } $$
(A.5)

where h k and g k are lowpass and highpass QMF coefficients, respectively. The filter coefficients can be calculated directly by using Eqs. (A.4) and (A.5) and the scale and shift orthogonality of ϕ(t) and ψ(t) to form the inner products

$$ h_{k} ={\left\langle {\phi (t),\phi_{- 1,k}} \right\rangle } = {\sqrt 2 }{\int\limits_{ - \infty }^\infty {\phi (t) \cdot \phi (2t - k)dt} } $$
(A.6)
$$ g_{k} ={\left\langle {\psi (t),\phi_{-1, k}} \right\rangle } = {\sqrt 2 }{\int\limits_{ - \infty }^\infty {\psi (t) \cdot \phi (2t - k)dt} } $$
(A.7)

for all finite k ∈ Z. The QMF pair has the special relationship

$$ g_{k} = ( - 1)^{k} h_{{1 - k}} $$
(A.8)

in addition to satisfying the following orthogonality and normalization properties:

$$ {\sum\limits_k {h_{{k - 2m}} h_{{k - 2{m}^{\prime} }} } } = \delta _{{m{m}^{\prime} }} $$
(A.9)
$$ {\sum\limits_k {g_{{k - 2m}} g_{{k - 2{m}^{\prime} }} } } = \delta _{{m{m}^{\prime} }} $$
(A.10)
$$ {\sum\limits_k {g_{{k - 2m}} h_{{k - 2{m}^{\prime} }} } } = 0 $$
(A.11)
$$ {\sum\limits_k {h_{k} } } = {\sqrt 2 } $$
(A.12)
$$ {\sum\limits_k {g_{k} } } = 0 $$
(A.13)

for all \( m,{m}^{\prime} \in Z, \) where \( \delta _{{m{m}^{\prime} }} \) is the Kronecker delta.10 Alternatively, when the filter coefficients are known, the wavelet and scaling functions can be produced from the coefficients.

In general, for an N level multiresolution analysis using the DWT, the signal is represented by the expression:

$$ \begin{aligned}{} x(t) &= A_{N} (t) + D_{N} (t) + \cdots + D_{1} (t) \\ & = {\sum\limits_k {c^{{A,n}}_{k} \phi _{{N,k}} + {\sum\limits_n {{\sum\limits_k {c^{{D,n}}_{k} \psi _{{n,k}} } }} }} } \\ \end{aligned} $$
(A.14)

where A(t) and D(t) are approximation and detail signals, and \( c^{{A,n}}_{k} \) and \( c^{{D,n}}_{k} \) are the nth level approximation and detail coefficients, respectively. The (n + 1) level coefficients are computed by discrete convolution of the previous nth level approximation coefficients with the time-reversed QMF impulse responses, h and g, along with downsampling by 230:

$$ c^{{A,n + 1}}_{k} = [h_{{ - k}} * c^{{A,n}}_{k} ]( \downarrow 2) = {\sum\limits_m {h_{{m - 2k}} c^{{A,n}}_{m} } } $$
(A.15)
$$ c^{{D,n + 1}}_{k} = [g_{{ - k}} * c^{{A,n}}_{k} ]( \downarrow 2) = {\sum\limits_m {g_{{m - 2k}} c^{{A,n}}_{m} } }. $$
(A.16)

The downsampling operation removes redundant information in the coefficients, since the doubling of scale at each level halves the temporal resolution. By downsampling, the total number of coefficients remains roughly the same throughout the analysis. Time reversal of the filters for decomposition vs. reconstruction prevents aliasing. For signal reconstruction using the QMF cascade, the coefficients are upsampled by 2 before being passed through their respective filters and added together.

To obtain a finer resolution analysis than the DWT, and for better discrimination of higher frequency features, the discrete wavelet packet transform (DWPT) is used.8,18 Implementation of the DWPT is similar to the DWT, except that the scaling and wavelet functions of the DWT are extended into a set of orthonormal wavelet packet functions, W m (t), which are defined by the recursion relations18:

$$ W_{{2r}} (t) = {\sqrt 2 }{\sum\limits_k {h_{k} W_{r} (2t - k)} } $$
(A.17)
$$ W_{{2r + 1}} (t) = {\sqrt 2 }{\sum\limits_k {g_{k} W_{r} (2t - k)} } $$
(A.18)

for integers r ≥ 0, where W 0(t) = ϕ(t) and W 1(t) = ψ(t). Multiresolution analysis gives rise to a binary tree structure, with coefficient nodes generated from a dictionary of wavelet packet atoms having discrete scaling, translation and sub-band localization:

$$ W_{{n,r,k}} = {\sqrt {2^{{ - n}} } }W_{r} (2^{{ - n}} t - k) $$
(A.19)

where the scale exponent n = 0, 1, 2, …, corresponds directly to the level in the tree, and index r = 0, 1, 2, …, 2n − 1 corresponds to the horizontal node position. If tree nodes are re-ordered in terms of increasing frequency, then r becomes a frequency index relating to the sub-band analyzed by atoms W n,r,k at scale 2n and time 2n k. For this paper, wavelet packet atoms were derived from Meyer scaling and wavelet functions, which are orthogonal, symmetric and compactly supported in the frequency domain.24 Compact frequency support provides good frequency localization for purposes of separating rhythmic components, and symmetric filters ensure the phase behavior is linear. For purposes of computing the DWPT, the impulse responses of the Meyer functions were approximated to obtain compact support in time.

Signal decomposition via the DWPT is accomplished by sequentially splitting coefficient nodes into daughter node pairs, while synthesis involves the reverse operation. The leaves (terminal nodes) of the connected tree constitute an orthonormal basis from which the original signal can be represented by the following summation:

$$ x(t) = {\sum\limits_{{n}^{\prime} } {{\sum\limits_{{r}^{\prime} } {x_{{{n}^{\prime},{r}^{\prime} }} (t)} }} } $$
(A.20)

where the reconstructed nodal time series

$$ x_{{{n}^{\prime},{r}^{\prime} }} (t) = {\sum\limits_k {c_{{{n}^{\prime},{r}^{\prime},k}} W_{{{n}^{\prime},{r}^{\prime},k}} } } $$
(A.21)

are defined for (n′,r′) belonging to the set denoting the leaves of the tree (with coefficients \( c_{{{n}^{\prime},{r}^{\prime},k}} \)).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zalay, O.C., Kang, E.E., Cotic, M. et al. A Wavelet Packet-Based Algorithm for the Extraction of Neural Rhythms. Ann Biomed Eng 37, 595–613 (2009). https://doi.org/10.1007/s10439-008-9634-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9634-5

Keywords

Navigation