Skip to main content
Log in

Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

ABSTRACT

The characteristics of human otoacoustic emissions (OAEs) have not been thoroughly examined above the standard audiometric frequency range (>8 kHz). This is despite the fact that deterioration of cochlear function often starts at the basal, high-frequency end of the cochlea before progressing apically. Here, stimulus-frequency OAEs (SFOAEs) were obtained from 0.5 to 20 kHz in 23 young, audiometrically normal female adults and three individuals with abnormal audiograms, using a low-to-moderate probe level of 36 dB forward pressure level (FPL). In audiometrically normal ears, SFOAEs were measurable at frequencies approaching the start of the steeply sloping high-frequency portion of the audiogram (∼12–15 kHz), though their amplitudes often declined substantially above ∼7 kHz, rarely exceeding 0 dB SPL above 8 kHz. This amplitude decline was typically abrupt and occurred at a frequency that was variable across subjects and not strongly related to the audiogram. In contrast, certain ears with elevated mid-frequency thresholds but regions of normal high-frequency sensitivity could possess surprisingly large SFOAEs (>10 dB SPL) above 7 kHz. When also measured, distortion-product OAEs (DPOAEs) usually remained stronger at higher stimulus frequencies and mirrored the audiogram more closely than SFOAEs. However, the high-frequency extent of SFOAE and DPOAE responses was similar when compared as a function of the response frequency, suggesting that middle ear transmission may be a common limiting factor at high frequencies. Nevertheless, cochlear factors are more likely responsible for complexities observed in high-frequency SFOAE spectra, such as abrupt amplitude changes and narrowly defined response peaks above 10 kHz, as well as the large responses in abnormal ears. These factors may include altered cochlear reflectivity due to subtle damage or the reduced spatial extent of the SFOAE generation region at the cochlear base. The use of higher probe levels is necessary to further evaluate the characteristics and potential utility of high-frequency SFOAE measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13

Similar content being viewed by others

REFERENCES

  • Arnold DJ, Lonsbury-Martin BL, Martin GK (1999) High-frequency hearing influences lower-frequency distortion-product otoacoustic emissions. Arch Otolaryngol Head Neck Surg 125:215–222

    Article  CAS  PubMed  Google Scholar 

  • Avan P, Bonfils P, Loth D, Narcy P, Trotoux J (1991) Quantitative assessment of human cochlear function by evoked otoacoustic emissions. Hear Res 52:99–112

    Article  CAS  PubMed  Google Scholar 

  • Avan P, Bonfils P, Loth D, Elbez M, Erminy M (1995) Transient-evoked otoacoustic emissions and high-frequency acoustic trauma in the guinea pig. J Acoust Soc Am 97:3012–3020

    Article  CAS  PubMed  Google Scholar 

  • Büchler M, Kompis M, Hotz MA (2012) Extended frequency range hearing thresholds and otoacoustic emissions in acute acoustic trauma. Otol Neurotol 33:1315–1322

    Article  PubMed  Google Scholar 

  • Charaziak KK, Siegel JH (2015) Tuning of SFOAEs evoked by low-frequency tones is not compatible with localized emission generation. J Assoc Res Otolaryngol 16:317–329

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi YS, Lee SY, Parham K, Neely ST, Kim DO (2008) Stimulus-frequency otoacoustic emission: measurements in humans and simulations with an active cochlear model. J Acoust Soc Am 123:2651–2669

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark WW, Kim DO, Zurek PM, Bohne BA (1984) Spontaneous otoacoustic emissions in chinchilla ear canals: correlation with histopathology and suppression by external tones. Hear Res 16:299–314

    Article  CAS  PubMed  Google Scholar 

  • Dewey JB and Dhar S (2015) Wideband profiles of stimulus-frequency otoacoustic emissions in humans. In: Karavitaki KD, Corey DP (eds) Mechanics of hearing: protein to perception. American Institute of Physics, Melville, NY, pp 090018-1–090018-5.

  • Dreisbach LE (1999) Characterizing the 2f 1-f 2 distortion-product otoacoustic emission and its generators measured from 2 to 20 kHz in humans. Doctoral dissertation, Northwestern University, Evanston, Illinois

  • Dreisbach LE, Siegel JH (2001) Distortion-product otoacoustic emissions measured at high frequencies in humans. J Acoust Soc Am 110:2456–2469

    Article  CAS  PubMed  Google Scholar 

  • Dreisbach LE, Siegel JH (2005) Level dependence of distortion-product otoacoustic emissions measured at high frequencies in humans. J Acoust Soc Am 117:2980–2988

    Article  PubMed  Google Scholar 

  • Dreisbach LE, Long KM, Lees SE (2006) Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults. Ear Hear 27:466–479

    Article  PubMed  Google Scholar 

  • Ellison JC, Keefe DH (2005) Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements. Ear Hear 26:487–503

    Article  PubMed  PubMed Central  Google Scholar 

  • Fausti SA, Erickson DA, Frey RH, Rappaport BZ, Schechter MA (1981) The effects of noise upon human hearing sensitivity from 8000 to 20 000 Hz. J Acoust Soc Am 69:1343–1347

    Article  CAS  PubMed  Google Scholar 

  • Goodman SS, Fitzpatrick DF, Ellison JC, Jesteadt W, Keefe DH (2009) High-frequency click-evoked otoacoustic emissions and behavioral thresholds in humans. J Acoust Soc Am 125:1014–1032

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodman SS, Withnell RH, Shera CA (2003) The origin of SFOAE microstructure in the guinea pig. Hear Res 183:7–17

    Article  PubMed  Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605

    Article  CAS  PubMed  Google Scholar 

  • Hecker DJ, Lohscheller J, Bader CA, Delb W, Schick B, Dlugaiczyk J (2011) A new method to analyze distortion product otoacoustic emissions (DPOAEs) in the high-frequency range up to 18 kHz using windowed periodograms. IEEE Trans Biomed Eng 58:2369–2377

    Article  Google Scholar 

  • Kakigi A, Hirakawa H, Harel N, Mount RJ, Harrison RV (1998) Basal cochlear lesions result in increased amplitude of otoacoustic emissions. J Otolaryngol 27:354–360

    Google Scholar 

  • Kalluri R, Shera CA (2001) Distortion-product source unmixing: a test of the two-mechanism model for DPOAE generation. J Acoust Soc Am 109:622–637

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R, Shera CA (2007a) Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am 121:2097–2110

    Article  PubMed  Google Scholar 

  • Kalluri R, Shera CA (2007b) Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing. J Acoust Soc Am 122:3562–3575

    Article  PubMed  Google Scholar 

  • Kalluri R, Shera CA (2013) Measuring stimulus-frequency otoacoustic emissions using swept tones. J Acoust Soc Am 134:356–368

    Article  PubMed  PubMed Central  Google Scholar 

  • Keefe DH (2012) Moments of click-evoked otoacoustic emissions in human ears: group delay and spread, instantaneous frequency and bandwidth. J Acoust Soc Am 132:3319–3350

    Article  PubMed  PubMed Central  Google Scholar 

  • Keefe DH, Ellison JC, Fitzpatrick DF, Gorga MP (2008) Two-tone suppression of stimulus frequency otoacoustic emissions. J Acoust Soc Am 123:1479–1494

    Article  PubMed  PubMed Central  Google Scholar 

  • Keefe DH, Goodman SS, Ellison JC, Fitzpatrick DF, Gorga MP (2011) Detecting high-frequency hearing loss with click-evoked otoacoustic emissions. J Acoust Soc Am 129:245–261

    Article  PubMed  PubMed Central  Google Scholar 

  • Kemp DT (1979) The evoked cochlear mechanical response and the auditory microstructure—evidence for a new element in cochlear mechanics. Scand Audiol Supp 9:35–47

    Google Scholar 

  • Kemp DT (1980) Towards a model for the origin of cochlear echoes. Hear Res 2:533–548

    Article  CAS  PubMed  Google Scholar 

  • Kemp DT, Chum RA (1980) Observations on the generator mechanism of stimulus frequency acoustic emissions—two tone suppression. In: deBoer E, Viergever MA (eds) Psychophysical, physiological and behavioral studies in hearing. Delft University Press, Delft, pp 34–41.

  • Konrad-Martin D, Keefe DH (2003) Time-frequency analyses of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: testing cochlear model predictions. J Acoust Soc Am 114:2021–2043

    Article  PubMed  Google Scholar 

  • Lee J, Dhar S, Abel R, Banakis R, Grolley E, Lee J, Zecker S, Siegel J (2012) Behavioral hearing thresholds between 0.125 and 20 kHz using depth-compensated ear simulator calibration. Ear Hear 33:315–329

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis JD, Goodman SS (2015) Basal contributions to short-latency transient-evoked otoacoustic emission components. J Assoc Res Otolaryngol 16:29–45

    Article  PubMed  Google Scholar 

  • Long GR, Talmadge CL (1997) Spontaneous otoacoustic emission frequency is modulated by heartbeat. J Acoust Soc Am 102:2831–2848

    Article  CAS  PubMed  Google Scholar 

  • Long GR, Talmadge CL, Lee J (2008) Measuring distortion product otoacoustic emissions using continuously sweeping primaries. J Acoust Soc Am 124:1613–1626

    Article  PubMed  Google Scholar 

  • Martin GK, Stagner BB, Lonsbury-Martin BL (2010) Evidence for basal distortion-product otoacoustic emission components. J Acoust Soc Am 127:2955–2972

    Article  PubMed  PubMed Central  Google Scholar 

  • Moleti A, Al-Maamury AM, Bertaccini D, Botti T, Sisto R (2013) Generation place of the long- and short-latency components of transient-evoked otoacoustic emissions in a nonlinear cochlear model. J Acoust Soc Am 133:4098–4108

    Article  PubMed  Google Scholar 

  • Moleti A, Sisto R, Lucertini M (2014) Experimental evidence for the basal generation place of the short-latency transient-evoked otoacoustic emissions. J Acoust Soc Am 135:2862–2872

    Article  CAS  PubMed  Google Scholar 

  • Poling GL, Siegel JH, Lee J, Lee J, Dhar S (2014) Characteristics of the 2f 1-f 2 distortion product otoacoustic emission in a normal hearing population. J Acoust Soc Am 135:287–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Powers NL, Salvi RJ, Wang J, Spongr V, Qiu CX (1995) Elevation of auditory thresholds by spontaneous cochlear oscillations. Nature 375:585–587

    Article  CAS  PubMed  Google Scholar 

  • Puria S (2003) Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. J Acoust Soc Am 113:2773–2789

    Article  PubMed  Google Scholar 

  • Rasetshwane DM, Neely ST (2011a) Calibration of otoacoustic emission probe microphones. J Acoust Soc Am 130:EL238–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasetshwane DM, Neely ST (2011b) Inverse solution of ear-canal area function from reflectance. J Acoust Soc Am 130:3873–3881

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasetshwane DM, Neely ST (2012) Measurements of wide-band cochlear reflectance in humans. J Assoc Res Otolaryngol 13:591–607

    Article  PubMed  PubMed Central  Google Scholar 

  • Raveh E, Mount RJ, Harrison RV (1998) Increased otoacoustic-emission amplitude secondary to cochlear lesions. J Otolaryngol 27:354–360

    CAS  PubMed  Google Scholar 

  • Ruggero MA, Kramek B, Rich NC (1984) Spontaneous otoacoustic emissions in a dog. Hear Res 13:293–296

    Article  CAS  PubMed  Google Scholar 

  • Ruggero MA, Rich NC, Freyman R (1983) Spontaneous and impulsively evoked otoacoustic emissions: indicators of cochlear pathology? Hear Res 10:283–300

    Article  CAS  PubMed  Google Scholar 

  • Ruggero MA, Temchin AN (2002) The roles of the external, middle, and inner ears in determining the bandwidth of hearing. Proc Natl Acad Sci 99:13206–13210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schairer KS, Ellison JC, Fitzpatrick D, Keefe DH (2006) Use of stimulus-frequency otoacoustic emission latency and level to investigate cochlear mechanics in human ears. J Acoust Soc Am 120:901–914

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheperle RA, Goodman SS, Neely ST (2011) Further assessment of forward pressure level for in situ calibration. J Acoust Soc Am 130:3882–3892

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheperle RA, Neely ST, Kopun JG, Gorga MP (2008) Influence of in situ, sound-level calibration on distortion-product otoacoustic emission variability. J Acoust Soc Am 124:288–300

    Article  PubMed  PubMed Central  Google Scholar 

  • Shera CA (2003) Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J Acoust Soc Am 114:244–262

    Article  PubMed  Google Scholar 

  • Shera CA, Bergevin C (2012) Obtaining reliable phase-gradient delays from otoacoustic emission data. J Acoust Soc Am 132:927–943

    Article  PubMed  PubMed Central  Google Scholar 

  • Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798

    Article  CAS  PubMed  Google Scholar 

  • Shera CA, Guinan JJ (2003) Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762–2772

    Article  PubMed  Google Scholar 

  • Shera CA, Guinan JJ, Oxenham AJ (2002) Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci 99:3318–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shera CA, Guinan JJ, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11:343–365

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegel JH (1994) Ear-canal standing waves and high-frequency sound calibration using otoacoustic emission probes. J Acoust Soc Am 95:2589–2597

    Article  Google Scholar 

  • Siegel JH (2007) Calibration of otoacoustic emission probes. In: Robinette MS, Glattke TJ (eds) Otoacoustic emissions: clinical applications (3rd ed). New York, Thieme Medical, pp 403–427

  • Siegel JH, Cerka AJ, Recio-Spinoso A, Temchin AN, van Dijk P, Ruggero MA (2005) Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. J Acoust Soc Am 118:2434–2443

    Article  PubMed  Google Scholar 

  • Sisto R, Moleti A, Shera CA (2015) On the spatial distribution of the reflection sources of different latency components of otoacoustic emissions. J Acoust Soc Am 137:768–776

    Article  PubMed  PubMed Central  Google Scholar 

  • Sisto R, Sanjust F, Moleti A (2013) Input/output functions of different-latency components of transient-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am 133:2240–2253

    Article  PubMed  Google Scholar 

  • Souza NN, Dhar S, Neely ST, Siegel JH (2014) Comparison of nine methods to estimate ear-canal stimulus levels. J Acoust Soc Am 136:1768–1787

    Article  PubMed  PubMed Central  Google Scholar 

  • Talmadge CL, Long GR, Murphy WJ, Tubis A (1993) New off-line method for detecting spontaneous otoacoustic emissions in human subjects. Hear Res 71:170–182

    Article  CAS  PubMed  Google Scholar 

  • Talmadge CL, Tubis A, Long GR, Tong C (2000) Modeling the combined effects of basilar membrane nonlinearity and roughness on stimulus frequency otoacoustic emission fine structure. J Acoust Soc Am 108:2911–2932

    Article  CAS  PubMed  Google Scholar 

  • Withnell RH, Yates GK, Kirk DL (2000) Changes to low-frequency components of the TEOAE following acoustic trauma to the base of the cochlea. Hear Res 139:1–12

    Article  CAS  PubMed  Google Scholar 

  • Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by NIH/NIDCD grant F31 DC013710 and by the School of Communication at Northwestern University. The authors would like to thank the three anonymous reviewers whose helpful comments clarified the manuscript. Additionally, thanks are due to Shawn Goodman and Stephen Neely for providing the MATLAB code and support in implementing the FPL calibration procedure, Simon Henin for code to perform the LSF analysis, as well as Jonathan Siegel for many stimulating discussions. Preliminary analyses of a portion of the data shown here were presented at the 2014 Mechanics of Hearing Workshop in Cape Sounio, Greece and recently published in the conference proceedings (Dewey and Dhar 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Dewey.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewey, J.B., Dhar, S. Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans. JARO 18, 89–110 (2017). https://doi.org/10.1007/s10162-016-0588-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-016-0588-2

Keywords

Navigation