Skip to main content

Advertisement

Log in

Klotho and fibroblast growth factor 23 in cerebrospinal fluid in children

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The fibroblast growth factor (FGF) 23/Klotho axis is a principal regulator of phosphate hemostasis and vitamin D metabolism, but limited data is available on its role in the central nervous system. Here, we investigate soluble α-Klotho (sKlotho) and C-terminal as well as intact FGF23 in cerebrospinal fluid (CSF) and plasma and their relationship to mineral metabolism parameters in humans. In 39 children aged 0.3–16.8 years undergoing lumbar puncture for the exclusion of inflammatory neurological disease, sKlotho and FGF23 were investigated by Western blot analysis, followed by ELISA quantification in CSF and plasma. The percentage of intrathecal synthesis of both proteins was calculated by measuring both the expected and observed CSF/plasma ratios of sKlotho and FGF23. The secreted (KL1) and cleaved (KL1+KL2) isoforms of sKlotho, and FGF23 were clearly detected in CSF in all subjects, although protein levels were lower compared to those of plasma samples (each p < 0.01). The intrathecal percentage of CSF sKlotho and FGF23 synthesis amounted to 98 and 99 %, respectively. CSF sKlotho levels were higher in boys than in girls (p < 0.01), and correlated positively with plasma C-terminal FGF23 concentrations (p < 0.05) and standardized height (p < 0.01). Importantly, there were no significant correlations between plasma and CSF levels of sKlotho or FGF23. Plasma sKlotho as well as C-terminal and intact FGF23, respectively, were associated with parameters of mineral metabolism These results provide evidence that cleaved and secreted sKlotho and FGF23 are present in CSF, mainly derived from brain and affected by sex, height, and mineral metabolism parameters in children. Nevertheless, the absence of significant associations between plasma and CSF levels of Klotho and FGF23, respectively, suggest that the regulation of Klotho and FGF23 may be different between organs secreting these hormones into blood and CSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu S, Quarles LD (2007) How fibroblast growth factor 23 works. J Am Soc Nephrol 18:1637–1647

    Article  CAS  PubMed  Google Scholar 

  2. Razzaque MS (2009) The FGF23-Klotho axis: endocrine regulation of phosphate homeostasis. Nat Rev Endocrinol 5:611–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Forster RE, Jurutka PW, Hsieh JC, Haussler CA, Lowmiller CL, Kaneko I, Haussler MR, Kerr Whitfield G (2011) Vitamin D receptor controls expression of the anti-aging klotho gene in mouse and human renal cells. Biochem Biophys Res Commun 414:557–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fukumoto S (2008) Physiological regulation and disorders of phosphate metabolism—pivotal role of fibroblast growth factor 23. Intern Med 47:337–343

    Article  PubMed  Google Scholar 

  5. Liu S, Guo R, Simpson LG, Xiao ZS, Burnham CE, Quarles LD (2003) Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem 278:37419–37426

    Article  CAS  PubMed  Google Scholar 

  6. Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD (2006) Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab 291:E38–E49

    Article  CAS  PubMed  Google Scholar 

  7. Masuyama R, Stockmans I, Torrekens S, Van Looveren R, Maes C, Carmeliet P, Bouillon R, Carmeliet G (2006) Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest 116:3150–3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamashita T, Yoshioka M, Itoh N (2000) Identification of a novel fibroblastgrowth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun 277:494–498

    Article  CAS  PubMed  Google Scholar 

  9. Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, Goetz R, Mohammadi M, Kuro-o M, Mangelsdorf DJ, Kliewer SA (2010) Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 24:2050–2064

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jongbloed F, Galassi A, Cozzolino M, Zietse R, Chiarelli G, Cusi D, Brancaccio D, Gallieni M (2011) Clinical significance of FGF-23 measurement in dialysis patients. Clin Nephrol 76:201–209

    Article  CAS  PubMed  Google Scholar 

  11. Kawata T, Imanishi Y, Kobayashi K, Miki T, Arnold A, Inaba M, Nishizawa Y (2007) Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J Am Soc Nephrol 18:2683–2688

    Article  CAS  PubMed  Google Scholar 

  12. Itoh N, Ornitz DM (2008) Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 237:18–27

    Article  CAS  PubMed  Google Scholar 

  13. Kuro-o M (2010) Overview of the FGF23-Klotho axis. Pediatr Nephrol 25:583–590

    Article  PubMed  Google Scholar 

  14. Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RJ, Mohammadi M (2000) Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 6:743–750

    Article  CAS  PubMed  Google Scholar 

  15. Mian IS (1998) Sequence, structural, functional, and phylogenetic analyses of three glycosidase families. Blood Cells Mol Dis 24:83–100

    CAS  PubMed  Google Scholar 

  16. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  CAS  PubMed  Google Scholar 

  17. Torres PU, Prie D, Molina-Bletry V, Beck L, Silve C, Friedlander G (2007) Klotho: an antiaging protein involved in mineral and vitamin D metabolism. Kidney Int 71:730–737

    Article  PubMed  Google Scholar 

  18. Clinton S, Glover M, Maltare A, Laszczyk A, Mehi S, Simmons R, King G (2013) Expression of klotho mRNA and protein in rat brain parenchyma from early postnatal development into adulthood. Brain Res 1527:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. German D, Khobahy I, Pastor J, Kuro-O M, Liu X (2012) Nuclear localization of in brain: an anti-aging protein. Neurobiol Aging 33:1483.e25–30

  20. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Article  CAS  PubMed  Google Scholar 

  22. Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR (2007) Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci USA 104:19796–19801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bloch L, Sineshchekova O, Reichenbach D, Reiss K, Saftig P, Kuro-o M, Kaether C (2009) Klotho is a substrate for alpha-, beta- and gamma-secretase. FEBS Lett 583:3221–3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuro-o M (2010) Klotho. Pflugers Arch 459:333–343

    Article  CAS  PubMed  Google Scholar 

  25. Imura A, Iwano A, Tohyama O, Tsuji Y, Nozaki K, Hashimoto N, Fujimori T, Nabeshima Y (2004) Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett 565:143–147

    Article  CAS  PubMed  Google Scholar 

  26. Hu MC, Shi M, Zhang J, Quinones H, Kuro-o M, Moe OW (2010) Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney Int 78:1240–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y (1998) Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun 242:626–630

    Article  CAS  PubMed  Google Scholar 

  28. Tohyama O, Imura A, Iwano A, Iwano A, Freund J-N, Henrissat B, Fujimori T, Nabeshima Y (2004) Klotho is a novel beta-glucuronidase capable of hydrolyzing steroid beta-glucuronides. J Biol Chem 279:9777–9784

    Article  CAS  PubMed  Google Scholar 

  29. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro-o M (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Drew DA, Tighiouart H, Scott TM, Lou KV, Fan L, Shaffi K, Weiner DE, Sarnak MJ (2014) FGF-23 and cognitive performance in hemodialysis patients. Hemodial Int 18:78–86

    Article  PubMed  Google Scholar 

  31. Hartmann H, Hawellek N, Wedekin M, Vogel C, Das AM, Balonwu K, Ehrich J, Haffner D, Pape L (2015) Early kidney transplantation improves neurocognitive outcome in patients with severe congenital chronic kidney disease. Transpl Int 28:429–436

    Article  PubMed  Google Scholar 

  32. Sarnak M, Tighiouart H, Scott T, Lou KV, Sorensen EP, Giang LM, Drew DA, Shaffi K, Strom JA, Singh AK, Weiner DE (2013) Frequency of and risk factors for poor cognitive performance in hemodialysis patients. Neurology 80:471–480

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu P, Chen L, Bai X, Karaplis A, Miao D, Gu N (2011) Impairment of spatial learning and memory in transgenic mice overexpressing human fibroblast growth factor-23. Brain Res 1412:9–17

    Article  CAS  PubMed  Google Scholar 

  34. Filler G, Lepage N (2003) Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 18:981–985

    Article  PubMed  Google Scholar 

  35. Barth JH, Jones RG, Payne RB (2000) Calculation of renal tubular reabsorption of phosphate: the algorithm performs better than the nomogram. Ann Clin Biochem 37:79–81

    Article  CAS  PubMed  Google Scholar 

  36. Jaeger U, Zellner K, Kromeyer-Hauschild K, Ludde R, Eisele R, Hebebrand J (2001) Body height, body weight and body mass index of German military recruits. Historical retrospect and current status. Anthropol Anz 59:251–273

    CAS  PubMed  Google Scholar 

  37. Neuhauser H, Schienkiewitz A, Schaffrath Rosario A, Dortschy R, Kurth BM, Ellert U, Stolzenberg H (2013) Referenzperzentile für anthropometrische Maßzahlen und Blutdruck aus der Studie zur Gesundheit von Kindern und Jugendlichen in Deutschland (KiGGS) 2003–2006. Robert-Koch-Institut, Berlin

    Google Scholar 

  38. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  39. Andersson M, Alvarez-Cermeño J, Bernardi G, Cogato I, Fredman P, Frederiksen J, Fredrikson S, Gallo P, Grimaldi LM, Grønning M (1994) Cerebrospinal fluid in the diagnosis of multiple sclerosis: a consensus report. J Neurol Neurosurg Psychiatry 57:897–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Reiber H, Thompson EJ, Grimsley G, Bernardi G, Adam P, Monteiro de Almeida S, Fredman P, Keir G, Lammers M, Liblau R, Menna-Barreto M, Sá MJ, Seres E, Sindic CJ, Teelken A, Trendelenburg C, Trojano M, van Antwerpen MP, Verbeek MM (2003) Quality assurance for cerebrospinal fluid protein analysis: international consensus by an Internet-based group discussion. Clin Chem Lab Med 41:331–337

    Article  CAS  PubMed  Google Scholar 

  41. Reiber H, Otto M, Trendelenburg C, Wormek A (2001) Reporting cerebrospinal fluid data: knowledge base and interpretation software. Clin Chem Lab Med 39:324–332

    Article  CAS  PubMed  Google Scholar 

  42. Reiber H, Peter JB (2001) Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurol Sci 184:101–122

    Article  CAS  PubMed  Google Scholar 

  43. Reiber H (2006) Liquordiagnostik. In: Berlit P (ed) Klinische Neurologie, 2nd edn. Springer, Berlin, pp 136–170

    Chapter  Google Scholar 

  44. Reiber H, Albaum W (2012) CSF research program

  45. Felgenhauer K (1974) Protein size and cerebrospinal fluid composition. Klin Wochenschr 52:1158–1164

    Article  CAS  PubMed  Google Scholar 

  46. Felgenhauer K, Liappis N, Nekic M (1982) Low molecular solutes and the blood cerebrospinal fluid barrier. Klin Wochenschr 60:1385–1392

    Article  CAS  PubMed  Google Scholar 

  47. Felgenhauer K, Beuche W (1999) Labordiagnostik neurologischer Erkrankungen: Liquoranalytik und -zytologie, Diagnose- und Prozessmarker. Thieme, Stuttgart

  48. Rippe B, Stelin G (1989) Simulations of peritoneal solute transport during CAPD. Application of two-pore formalism. Kidney Int 35:1234–1244

    Article  CAS  PubMed  Google Scholar 

  49. Goetz R, Beenken A, Ibrahimi OA, Kalinina J, Olsen SK et al (2007) Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 27:3417–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamashita T (2005) Structural and biochemical properties of fibroblast growth factor 23. Ther Apher Dial 9:313–318

    Article  CAS  PubMed  Google Scholar 

  51. Fischer DC, Mischek A, Wolf S, Rahn A, Salweski B, Kundt G, Haffner D (2012) Paediatric reference values for the C-terminal fragment of fibroblast-growth factor-23, sclerostin, bone-specific alkaline phosphatase and isoform 5b of tartrate-resistant acid phosphatase. Ann Clin Biochem 49:546–553

    Article  CAS  PubMed  Google Scholar 

  52. Duce JA, Podvin S, Hollander W, Kipling D, Rosene DL, Abraham CR (2008) Gene profile analysis implicates Klotho as an important contributor to aging changes in brain white matter of the rhesus monkey. Glia 56:106–117

    Article  PubMed  Google Scholar 

  53. Li SA, Watanabe M, Yamada H, Nagai A, Kinuta M, Takei K (2004) Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct Funct 29:91–99

    Article  CAS  PubMed  Google Scholar 

  54. Oz O, Hajibeigi A, Zerwekh J, Bindels R, Kuroo M, Pak C (2006) Estrogen Regulates Expression of the Molecular Machinery Controlling Calcium Reabsorption in the Distal Convoluted Tubule. ASBMR 28th Annual Meeting

  55. Semba RD, Moghekar AR, Hu J, Sun K, Turner R, Ferrucci L, O’Brien R (2013) Klotho in the cerebrospinal fluid of adults with and without Alzheimer’s disease. Neurosci Lett 558:37–40

    Article  PubMed  PubMed Central  Google Scholar 

  56. Siahanidou T, Garatzioti M, Lazaropoulou C, Kourlaba G, Papassotiriou I, Kino T, Imura A, Nabeshima Y, Chrousos G (2012) Plasma soluble alpha-klotho protein levels in premature and term neonates: correlations with growth and metabolic parameters. Eur J Endocrinol 167:433–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shahmoon S, Rubinfeld H, Wolf I, Cohen ZR, Hadani M, Shimon I, Rubinek T (2014) The aging supressor klotho: a potential regulator of growth hormone secretion. Am J Physiol Endocrinol Metab 307:E326–E334

    Article  CAS  PubMed  Google Scholar 

  58. Kashimada K, Ymashita T, Tsuji K, Nifuji A, Mizutani S, Sabeshima Y, Noda M (2002) Defects in growth and bone metabolism in klotho mutant mice are resistant to GH treatment. J Endocrinol 174:403–410

    Article  CAS  PubMed  Google Scholar 

  59. Uchida A, Komiya Y, Tashiro T, Yorifuji H, Kishimoto T, Nabeshima Y, Hisanaga S (2001) Neurofilaments of Klotho, the mutant mouse prematurely displaying symptoms resembling human aging. J Neurosci Res 64:364–370

    Article  CAS  PubMed  Google Scholar 

  60. Chen CD, Sloane JA, Li H, Aytan N, Giannaris EL, Zeldich E, Hinman JD, Dedeoglu A, Dl Rosene, Bansal R, Luebke JI, Kuro-o M, Abraham CR (2013) The antiaging protein Klotho enhances oligodendrocyte maturation and myelination of the CNS. J Neurosci 33:1927–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zeldich E, Chen CD, Avila R, Medicetty S, Abraham CR (2015) The anti-aging protein klotho enhances remyelination following cuprizone-induced demyelination. J Mol Neurosci 57:185–196

    Article  CAS  PubMed  Google Scholar 

  62. Voortman T, van den Hooven EH, Heijboer AC, Hofman A, Jaddoe VW, Franco OH (2015) Vitamin D deficiency in school-age children is associated with sociodemographic and lifestyle factors. J Nutr 145:791–798

    Article  CAS  PubMed  Google Scholar 

  63. Gkentzi D, Efthymiadou A, Kritikou D, Chrysis D (2014) Fibroblast growth factor 23 and Klotho serum levels in healthy children. Bone 66C:8–14

    Article  Google Scholar 

  64. Yamazaki Y, Imura A, Urakawa I, Shimada T, Murakami J et al (2010) Establishment of sandwich ELISA for soluble alpha-Klotho measurement: age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun 398:513–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the patients and their families for taking part in this study and appreciate the support of the doctors and nurses responsible for the patient care in our institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maren Leifheit-Nestler.

Ethics declarations

Conflict of interests

All authors have no conflicts of interest to report.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 210 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunert, S.K., Hartmann, H., Haffner, D. et al. Klotho and fibroblast growth factor 23 in cerebrospinal fluid in children. J Bone Miner Metab 35, 215–226 (2017). https://doi.org/10.1007/s00774-016-0746-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-016-0746-y

Keywords

Navigation