Skip to main content

Advertisement

Log in

Semaphorins in kidney development and disease: modulators of ureteric bud branching, vascular morphogenesis, and podocyte-endothelial crosstalk

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Semaphorins are guidance proteins that play important roles in organogenesis and disease. Expression of class 3 semaphorins and their receptors is regulated during kidney development. Gain- and loss-of-function experiments demonstrated that tight semaphorin3a gene dosage is required for podocyte differentiation, and for the establishment of a normal glomerular filtration barrier. Sema3a modulates kidney vascular patterning acting as a negative regulator of endothelial cell migration and survival. Excess podocyte semaphorin3a expression causes glomerular disease in mice. In addition, Sema3a is a negative regulator of ureteric bud branching, whereas Sema3c is a positive regulator of ureteric bud and endothelial cell branching morphogenesis. In summary, secreted semaphorins modulate ureteric bud branching, vascular patterning, and podocyte-endothelial crosstalk, suggesting that they play a role in renal disease. Understanding the signaling pathways downstream from semaphorin receptors will provide insight into the mechanism of action of semaphorins in renal pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tran TS, Kolodkin AL, Bharadwaj R (2007) Semaphorin regulation of cellular morphology. Annu Rev Cell Dev Biol 23:263–292

    Article  CAS  PubMed  Google Scholar 

  2. Semaphorin Nomenclature Committee (1999) Unified nomenclature for the semaphorins/collapsins. Cell 97(5):551–552

    Article  Google Scholar 

  3. Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, Ginty DD (1997) Neuropilin is a semaphorin III receptor. Cell 90:753–762

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi T, Fournier A, Nakamura F, Wang LH, Murakami Y, Kalb RG, Fujisawa H, Strittmatter SM (1999) Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell 99:59–69

    Article  CAS  PubMed  Google Scholar 

  5. Chen H, He Z, Bagri A, Tessier-Lavigne M (1998) Semaphorin-neuropilin interactions underlying sympathetic axon responses to class III semaphorins. Neuron 21:1283–1290

    Article  CAS  PubMed  Google Scholar 

  6. Chen H, Chedotal A, He Z, Goodman CS, Tessier-Lavigne M (1997) Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron 19:547–559

    Article  CAS  PubMed  Google Scholar 

  7. Geretti E, Shimizu A, Klagsbrun M (2008) Neuropilin structure governs VEGF and semaphorin binding and regulates angiogenesis. Angiogenesis 11:31–39

    Article  CAS  PubMed  Google Scholar 

  8. Miao HQ, Soker S, Feiner L, Alonso JL, Raper JA, Klagsbrun M (1999) Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. J Cell Biol 146:233–242

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tufro A, Teichman J, Banu N, Villegas G (2007) Crosstalk between VEGF-A/VEGFR2 and GDNF/RET signaling pathways. Biochem Biophys Res Commun 358:410–416

    Article  CAS  PubMed  Google Scholar 

  10. Tapia R, Guan F, Gershin I, Teichman J, Villegas G, Tufro A (2008) Semaphorin3a disrupts podocyte foot processes causing acute proteinuria. Kidney Int 73:7337–7340

    Article  Google Scholar 

  11. Tamagnone L, Artigiani S, Chen H, He Z, Ming GI, Song H, Chedotal A, Winberg ML, Goodman CS, Poo M, Tessier-Lavigne M, Comoglio PM (1999) Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 99:71–80

    Article  CAS  PubMed  Google Scholar 

  12. Castellani V, Chédotal A, Schachner M, Faivre-Sarrailh C, Rougon G (2000) Analysis of the L1-deficient mouse phenotype reveals cross-talk between Sema3A and L1 signaling pathways in axonal guidance. Neuron 27:237–249

    Article  CAS  PubMed  Google Scholar 

  13. Toyofuku T, Zhang H, Kumanogoh A, Takegahara N, Suto F, Kamei J, Aoki K, Yabuki M, Hori M, Fujisawa H, Kikutani H (2004) Dual roles of Sema6D in cardiac morphogenesis through region-specific association of its receptor, Plexin-A1, with off-track and vascular endothelial growth factor receptor type 2. Genes Dev 18:435–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Serini G, Valdembri D, Zanivan S, Morterra G, Burkhardt C, Caccavari F, Zammataro L, Primo L, Tamagnone L, Logan M, Tessier-Lavigne M, Taniguchi M, Püschel AW, Bussolino F (2003) Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 424:391–397

    Article  CAS  PubMed  Google Scholar 

  15. Roth L, Koncina E, Satkauskas S, Crémel G, Aunis D, Bagnard D (2009) The many faces of semaphorins: from development to pathology. Cell Mol Life Sci 66:649–666

    Article  CAS  PubMed  Google Scholar 

  16. Villegas G, Tufro A (2002) Ontogeny of semaphorins 3A and 3F and their receptors neuropilins 1 and 2 in the kidney. Gene Expr Patterns 2(1–2):151–155

    Article  CAS  PubMed  Google Scholar 

  17. Reidy KJ, Villegas G, Teichman J, Veron D, Shen W, Jimenez J, Thomas D, Tufro A (2009) Semaphorin3a regulates endothelial cell number and podocyte differentiation during glomerular development. Development 136:3979–3989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Perälä NM, Immonen T, Sariola H (2005) The expression of plexins during mouse embryogenesis. Gene Expr Patterns 5:355–362

    Article  PubMed  Google Scholar 

  19. Guan F, Villegas G, Teichman J, Mundel P, Tufro A (2006) Autocrine class 3 semaphorin system regulates slit diaphragm proteins and podocyte survival. Kidney Int 69:1564–1569

    Article  CAS  PubMed  Google Scholar 

  20. Tufro A, Norwood VF, Carey RM, Gomez RA (1999) Vascular endothelial growth factor induces nephrogenesis and vasculogenesis. J Am Soc Nephrol 10:2125–2134

    CAS  PubMed  Google Scholar 

  21. Veron D, Reidy KJ, Bertuccio C, Teichman J, Villegas G, Jimenez J, Shen W, Kopp JB, Thomas DB, Tufro A (2010) Overexpression of VEGF-A in podocytes of adult mice causes glomerular disease. Kidney Int 77:989–999

    Article  CAS  PubMed  Google Scholar 

  22. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 927:35–745

    Google Scholar 

  23. Tufro A (2000) VEGF spatially directs angiogenesis during metanephric development in vitro. Dev Biol 227:558–566

    Article  CAS  PubMed  Google Scholar 

  24. Tufro A, Teichman J, Woda C, Villegas G (2008) Semaphorin3a inhibits ureteric bud branching morphogenesis. Mech Dev 125:558–568

    Article  CAS  PubMed  Google Scholar 

  25. Srinivas S, Goldberg MR, Watanabe T, D’Agati V, al-Awqati Q, Costantini F (1999) Expression of green fluorescent protein in the ureteric bud of transgenic mice: a new tool for the analysis of ureteric bud morphogenesis. Dev Genet 24(3–4):241–251

    Article  CAS  PubMed  Google Scholar 

  26. Karihaloo A, Karumanchi SA, Cantley WL, Venkatesha S, Cantley LG, Kale S (2005) Vascular endothelial growth factor induces branching morphogenesis/tubulogenesis in renal epithelial cells in a neuropilin-dependent fashion. Mol Cell Biol 25:7441–7448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Korostylev A, Worzfeld T, Deng S, Friedel RH, Swiercz JM, Vodrazka P, Maier V, Hirschberg A, Ohoka Y, Inagaki S, Offermanns S, Kuner R (2008) A functional role for semaphorin 4D/plexin B1 interactions in epithelial branching morphogenesis during organogenesis. Development 135:3333–3343

    Article  CAS  PubMed  Google Scholar 

  28. Perälä N, Jakobson M, Ola R, Fazzari P, Penachioni JY, Nymark M, Tanninen T, Immonen T, Tamagnone L, Sariola H (2010) Sema4C-Plexin B2 signalling modulates ureteric branching in developing kidney. Differentiation. doi:https://doi.org/10.1016/j.diff.2010.10.001

  29. Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N, Gerber HP, Kikkawa Y, Miner JH, Quaggin SE (2003) Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 111:707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Veron D, Reidy K, Marlier A, Bertuccio C, Villegas G, Jimenez J, Kashgarian M, Tufro A (2010) Induction of podocyte VEGF164 overexpression at different stages of development causes congenital nephrosis or steroid-resistant nephrotic syndrome. Am J Pathol 177:2225–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Veron D, Bertuccio CA, Marlier A, Reidy K, Garcia AM, Jimenez J, Velazquez H, Kashgarian M, Moeckel GW, Tufro A (2010) Podocyte VEGF164 overexpression causes severe nodular glomerulosclerosis in type 1 diabetic mice. Diabetologia. doi:https://doi.org/10.1007/s00125-010-2034-z

  32. Korgaonkar SN, Feng X, Ross MD, Lu TC, D’Agati V, Iyengar R, Klotman PE, He JC (2008) HIV-1 upregulates VEGF in podocytes. J Am Soc Nephrol 19:877–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Behar O, Golden JA, Mashimo H, Schoen FJ, Fishman MC (1996) Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383:525–528

    Article  CAS  PubMed  Google Scholar 

  34. Feiner L, Webber AL, Brown CB, Lu MM, Jia L, Feinstein P, Mombaerts P, Epstein JA, Raper JA (2001) Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development 128:3061–3070

    CAS  PubMed  Google Scholar 

  35. Banu N, Teichman J, Dunlap-Brown M, Villegas G, Tufro A (2006) Semaphorin 3C regulates endothelial cell function by increasing integrin activity. FASEB J 20:2150–2152

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH RO1-DK64187 and DK59333 (A.T.), K.R. was supported by NIH training grant T32 DK-007110. We thank K. Susztak (Albert Einstein College of Medicine) for providing the RNA samples from PAN rats and Db/Db mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alda Tufro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reidy, K., Tufro, A. Semaphorins in kidney development and disease: modulators of ureteric bud branching, vascular morphogenesis, and podocyte-endothelial crosstalk. Pediatr Nephrol 26, 1407–1412 (2011). https://doi.org/10.1007/s00467-011-1769-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1769-1

Keywords

Navigation