Skip to main content
Log in

Interstitial cells in the primate gastrointestinal tract

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Kit immunohistochemistry and confocal reconstructions have provided detailed 3-dimensional images of ICC networks throughout the gastrointestinal (GI) tract. Morphological criteria have been used to establish that different classes of ICC exist within the GI tract and physiological studies have shown that these classes have distinct physiological roles in GI motility. Structural studies have focused predominately on rodent models and less information is available on whether similar classes of ICC exist within the GI tracts of humans or non-human primates. Using Kit immunohistochemistry and confocal imaging, we examined the 3-dimensional structure of ICC throughout the GI tract of cynomolgus monkeys. Whole or flat mounts and cryostat sections were used to examine ICC networks in the lower esophageal sphincter (LES), stomach, small intestine and colon. Anti-histamine antibodies were used to distinguish ICC from mast cells in the lamina propria. Kit labeling identified complex networks of ICC populations throughout the non-human primate GI tract that have structural characteristics similar to that described for ICC populations in rodent models. ICC-MY formed anastomosing networks in the myenteric plexus region. ICC-IM were interposed between smooth muscle cells in the stomach and colon and were concentrated within the deep muscular plexus (ICC-DMP) of the intestine. ICC-SEP were found in septal regions of the antrum that separated circular muscle bundles. Spindle-shaped histamine+ mast cells were found in the lamina propria throughout the GI tract. Since similar sub-populations of ICC exist within the GI tract of primates and rodents and the use of rodents to study the functional roles of different classes of ICC is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albertí E, Mikkelsen HB, Wang XY, Díaz M, Larsen JO, Huizinga JD, Jiménez M (2007) Pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats. Am J Physiol Gastrointest Liver Physiol 292:G1499–G1510

    Article  PubMed  Google Scholar 

  • Aranishi H, Kunisawa Y, Komuro T (2009) Characterization of interstitial cells of Cajal in the subserosal layer of the guinea-pig colon. Cell Tissue Res 335:323–329

    Article  PubMed  CAS  Google Scholar 

  • Beckett EA, Horiguchi K, Khoyi M, Sanders KM, Ward SM (2002) Loss of enteric motor neurotransmission in the gastric fundus of Sl/Sl(d) mice. J Physiol 543:871–887

    Article  PubMed  CAS  Google Scholar 

  • Bernardini N, Segnani C, Ippolito C, De Giorgio R, Colucci R, Faussone-Pellegrini MS, Chiarugi M, Campani D, Castagna M, Mattii L, Blandizzi C, Dolfi A (2012) Immunohistochemical analysis of myenteric ganglia and interstitial cells of Cajal in ulcerative colitis. J Cell Mol Med 16:318–327

    Google Scholar 

  • Burns AJ, Lomax AE, Torihashi S, Sanders KM, Ward SM (1996) Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci USA 93:12008–12013

    Article  PubMed  CAS  Google Scholar 

  • Burns AJ, Herbert TM, Ward SM, Sanders KM (1997) Interstitial cells of Cajal in the guinea-pig gastrointestinal tract as revealed by c-Kit immunohistochemistry. Cell Tissue Res 290:11–20

    Article  PubMed  CAS  Google Scholar 

  • Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Ordög T, Chen J, Young DL, Bardsley MR, Redelman D, Ward SM, Sanders KM (2007) Differential gene expression in functional classes of interstitial cells of Cajal in murine small intestine. Physiol Genom 31:492–509

    Article  CAS  Google Scholar 

  • Cobine CA, Hennig GW, Bayguinov YR, Hatton WJ, Ward SM, Keef KD (2010) Interstitial cells of Cajal in the cynomolgus monkey rectoanal region and their relationship to sympathetic and nitrergic nerves. Am J Physiol Gastrointest Liver Physiol 298:G643–G656

    Article  PubMed  CAS  Google Scholar 

  • Cobine CA, Hennig GW, Kurahashi M, Sanders KM, Ward SM, Keef KD (2011) Relationship between interstitial cells of Cajal, fibroblast-like cells and inhibitory motor nerves in the internal anal sphincter. Cell Tissue Res 344:17–30

    Article  PubMed  Google Scholar 

  • Dickens EJ, Hirst GD, Tomita T (1999) Identification of rhythmically active cells in guinea-pig stomach. J Physiol 514(Pt 2):515–531

    Article  PubMed  CAS  Google Scholar 

  • Dickens EJ, Edwards FR, Hirst GD (2001) Selective knockout of intramuscular interstitial cells reveals their role in the generation of slow waves in mouse stomach. J Physiol 531:827–833

    Article  PubMed  CAS  Google Scholar 

  • Espinosa I, Lee CH, Kim MK, Rouse BT, Subramanian S, Montgomery K, Varma S, Corless CL, Heinrich MC, Smith KS, Wang Z, Rubin B, Nielsen TO, Seitz RS, Ross DT, West RB, Cleary ML, van de Rijn M (2008) A novel monoclonal antibody against DOG1 is a sensitive and specific marker for gastrointestinal stromal tumors. Am J Surg Pathol 32:210–218

    Article  PubMed  Google Scholar 

  • Fox EA, Phillips RJ, Martinson FA, Baronowsky EA, Powley TL (2001) C-Kit mutant mice have a selective loss of vagal intramuscular mechanoreceptors in the forestomach. Anat Embryol (Berl) 204:11–26

    Article  CAS  Google Scholar 

  • Gomez-Pinilla PJ, Gibbons SJ, Bardsley MR, Lorincz A, Pozo MJ, Pasricha PJ, Van de Rijn M, West RB, Sarr MG, Kendrick ML, Cima RR, Dozois EJ, Larson DW, Ordog T, Farrugia G (2009) Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 296:G1370–G1381

    Article  PubMed  CAS  Google Scholar 

  • Grützkau A, Smorodchenko A, Lippert U, Kirchhof L, Artuc M, Henz BM (2004) LAMP-1 and LAMP-2, but not LAMP-3, are reliable markers for activation-induced secretion of human mast cells. Cytometry A 61:62–68

    Article  PubMed  Google Scholar 

  • Hagger R, Gharaie S, Finlayson C, Kumar D (1998) Regional and transmural density of interstitial cells of Cajal in human colon and rectum. Am J Physiol 275:G1309–G1316

    PubMed  CAS  Google Scholar 

  • Horiguchi K, Semple GS, Sanders KM, Ward SM (2001) Distribution of pacemaker function through the tunica muscularis of the canine gastric antrum. J Physiol 537:237–250

    Article  PubMed  CAS  Google Scholar 

  • Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A (1995) W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373:347–349

    Article  PubMed  CAS  Google Scholar 

  • Hwang SJ, Blair PJ, Britton FC, O’Driscoll KE, Hennig G, Bayguinov YR, Rock JR, Harfe BD, Sanders KM, Ward SM (2009) Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol 587:4887–4904

    Article  PubMed  CAS  Google Scholar 

  • Ibba Manneschi L, Pacini S, Corsani L, Bechi P, Faussone-Pellegrini MS (2004) Interstitital cells of Cajal in the human stomach: distribution and relationship with enteric innervation. Histol Histopathol 19:1153–1164

    PubMed  CAS  Google Scholar 

  • Iino S, Horiguchi K, Nojyo Y (2008) Interstitial cells of Cajal are innervated by nitrergic nerves and express nitric oxide-sensitive guanylate cyclase in the guinea-pig gastrointestinal tract. Neuroscience 152:437–448

    Article  PubMed  CAS  Google Scholar 

  • Iino S, Horiguchi K, Horiguchi S, Nojyo Y (2009) c-Kit-negative fibroblast-like cells express platelet-derived growth factor receptor alpha in the murine gastrointestinal musculature. Histochem Cell Biol 131:691–702

    Article  PubMed  CAS  Google Scholar 

  • Johansson O, Virtanen M, Hilliges M, Yang Q (1994) Histamine immunohistochemistry is superior to the conventional heparin-based routine staining methodology for investigations of human skin mast cells. Histochem J 26:424–430

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita K, Horiguchi K, Fujisawa M, Kobirumaki F, Yamato S, Hori M, Ozaki H (2007) Possible involvement of muscularis resident macrophages in impairment of interstitial cells of Cajal and myenteric nerve systems in rat models of TNBS-induced colitis. Histochem Cell Biol 127:41–53

    Article  PubMed  CAS  Google Scholar 

  • Komuro T, Seki K, Horiguchi K (1999) Ultrastructural characterization of the interstitial cells of Cajal. Arch Histol Cytol 62:295–316

    Article  PubMed  CAS  Google Scholar 

  • Kurahashi M, Niwa Y, Cheng J, Ohsaki Y, Fujita A, Goto H, Fujimoto T, Torihashi S (2008) Platelet-derived growth factor signals play critical roles in differentiation of longitudinal smooth muscle cells in mouse embryonic gut. Neurogastroenterol Motil 20:521–531

    Article  PubMed  CAS  Google Scholar 

  • Kurahashi M, Zheng H, Dwyer L, Ward SM, Don Koh S, Sanders KM (2011) A functional role for the ‘fibroblast-like cells’ in gastrointestinal smooth muscles. J Physiol 589:697–710

    Article  PubMed  CAS  Google Scholar 

  • Kurahashi M, Nakano Y, Hennig GW, Ward SM, Sanders KM (2012) Platelet derived growth factor receptor α-positive cells in the tunica muscularis of human colon. J Cell Mol Med

  • Liu YA, Chung YC, Pan ST, Hou YC, Peng SJ, Pasricha PJ, Tang SC (2012) 3-D illustration of network orientations of interstitial cells of Cajal subgroups in human colon as revealed by deep-tissue imaging with optical clearing. Am J Physiol Gastrointest Liver Physiol 302:G1099–G1110

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K (1992) Requirement of c-kit for development of intestinal pacemaker system. Development 116:369–375

    PubMed  CAS  Google Scholar 

  • McCloskey KD, Gurney AM (2002) Kit positive cells in the guinea pig bladder. J Urol 168:832–836

    Article  PubMed  Google Scholar 

  • McHale NG, Hollywood MA, Sergeant GP, Shafei M, Thornbury KT, Ward SM (2006) Organization and function of ICC in the urinary tract. J Physiol 576:689–694

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen HB (2010) Interstitial cells of Cajal, macrophages and mast cells in the gut musculature: morphology, distribution, spatial and possible functional interactions. J Cell Mol Med 14:818–832

    Article  PubMed  CAS  Google Scholar 

  • Nissinen MJ, Panula P (1995) Developmental patterns of histamine-like immunoreactivity in the mouse. J Histochem Cytochem 43:211–227

    Article  PubMed  CAS  Google Scholar 

  • Ordog T, Ward SM, Sanders KM (1999) Interstitial cells of cajal generate electrical slow waves in the murine stomach. J Physiol 518(Pt 1):257–269

    Article  PubMed  CAS  Google Scholar 

  • Pezzone MA, Watkins SC, Alber SM, King WE, de Groat WC, Chancellor MB, Fraser MO (2003) Identification of c-kit-positive cells in the mouse ureter: the interstitial cells of Cajal of the urinary tract. Am J Physiol Ren Physiol 284:F925–F929

    CAS  Google Scholar 

  • Rhee PL, Lee JY, Son HJ, Kim JJ, Rhee JC, Kim S, Koh SD, Hwang SJ, Sanders KM, Ward SM (2011) Analysis of pacemaker activity in the human stomach. J Physiol 589:6105–6118

    Google Scholar 

  • Rumessen JJ (1994) Identification of interstitial cells of Cajal. Significance for studies of human small intestine and colon. Dan Med Bull 41:275–293

    PubMed  CAS  Google Scholar 

  • Sanders KM (1996) A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 111:492–515

    Article  PubMed  CAS  Google Scholar 

  • Sanders KM, Stevens R, Burke E, Ward SW (1990) Slow waves actively propagate at submucosal surface of circular layer in canine colon. Am J Physiol 259:G258–G263

    PubMed  CAS  Google Scholar 

  • Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Sergeant GP, Thornbury KD, McHale NG, Hollywood MA (2006) Interstitial cells of Cajal in the urethra. J Cell Mol Med 10:280–291

    Article  PubMed  CAS  Google Scholar 

  • Silverman AJ, Sutherland AK, Wilhelm M, Silver R (2000) Mast cells migrate from blood to brain. J Neurosci 20:401–408

    PubMed  CAS  Google Scholar 

  • Song G, David G, Hirst S, Sanders KM, Ward SM (2005) Regional variation in ICC distribution, pacemaking activity and neural responses in the longitudinal muscle of the murine stomach. J Physiol 564:523–540

    Article  PubMed  CAS  Google Scholar 

  • Strege PR, Ou Y, Sha L, Rich A, Gibbons SJ, Szurszewski JH, Sarr MG, Farrugia G (2003) Sodium current in human intestinal interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 285:G1111–G1121

    PubMed  CAS  Google Scholar 

  • Thuneberg L (1982) Interstitial cells of Cajal: intestinal pacemaker cells? Adv Anat Embryol Cell Biol 71:1–130

    Article  PubMed  CAS  Google Scholar 

  • Torihashi S, Ward SM, Nishikawa S, Nishi K, Kobayashi S, Sanders KM (1995) c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res 280:97–111

    PubMed  CAS  Google Scholar 

  • Torihashi S, Ward SM, Sanders KM (1997) Development of c-Kit-positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology 112:144–155

    Article  PubMed  CAS  Google Scholar 

  • Vanderwinden JM (1999) Role of Interstitial Cells of Cajal and their relationship with the enteric nervous system. Eur J Morphol 37:250–256

    Article  PubMed  CAS  Google Scholar 

  • Vanderwinden JM, Liu H, Menu R, Conreur JL, De Laet MH, Vanderhaeghen JJ (1996) The pathology of infantile hypertrophic pyloric stenosis after healing. J Pediatr Surg 31:1530–1534

    Article  PubMed  CAS  Google Scholar 

  • Ward SM, Burns AJ, Torihashi S, Sanders KM (1994) Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol 480(Pt 1):91–97

    PubMed  CAS  Google Scholar 

  • Ward SM, Burns AJ, Torihashi S, Harney SC, Sanders KM (1995) Impaired development of interstitial cells and intestinal electrical rhythmicity in steel mutants. Am J Physiol 269:C1577–C1585

    PubMed  CAS  Google Scholar 

  • Ward SM, Morris G, Reese L, Wang XY, Sanders KM (1998) Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the lower esophageal and pyloric sphincters. Gastroenterology 115:314–329

    Article  PubMed  CAS  Google Scholar 

  • Ward SM, Beckett EA, Wang X, Baker F, Khoyi M, Sanders KM (2000) Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J Neurosci 20:1393–1403

    PubMed  CAS  Google Scholar 

  • Won KJ, Sanders KM, Ward SM (2005) Interstitial cells of Cajal mediate mechanosensitive responses in the stomach. Proc Natl Acad Sci USA 102:14913–14918

    Article  PubMed  CAS  Google Scholar 

  • Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215

    Article  PubMed  CAS  Google Scholar 

  • Yun HY, Sung R, Kim YC, Choi W, Kim HS, Kim H, Lee GJ, You RY, Park SM, Yun SJ, Kim MJ, Kim WS, Song YJ, Xu WX, Lee SJ (2010) Regional Distribution of Interstitial Cells of Cajal (ICC) in Human Stomach. Korean J Physiol Pharmacol 14:317–324

    Article  PubMed  Google Scholar 

  • Zhu MH, Kim TW, Ro S, Yan W, Ward SM, Koh SD, Sanders KM (2009) A Ca(2+)-activated Cl(-) conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol 587:4905–4918

    Article  PubMed  CAS  Google Scholar 

  • Zhu MH, Sung IK, Zheng H, Sung TS, Britton FC, O’Driscoll K, Koh SD, Sanders KM (2011) Muscarinic activation of Ca2 + -activated Cl- current in interstitial cells of Cajal. J Physiol 589:4565–4582

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH DK57236 and NIH P01 DK41315. The Morphology Core Laboratory supported by Program Project Grant, NIH P01 DK41315 and an equipment grant from the NCRR for the Zeiss LSM510 confocal microscope (1 S10 RR16871), were used for the immunohistochemical studies. We gratefully acknowledge Charles River Laboratories (Sparks, Nevada, USA) for providing us with the monkey tissue necessary for our experiments. We are also grateful to Nancy Horowitz for collecting the tissues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean M. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blair, P.J., Bayguinov, Y., Sanders, K.M. et al. Interstitial cells in the primate gastrointestinal tract. Cell Tissue Res 350, 199–213 (2012). https://doi.org/10.1007/s00441-012-1468-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1468-7

Keywords

Navigation