Skip to main content
Log in

Immunohistochemical analysis of substance P-containing neurons in rat small intestine

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The neuropeptide substance P (SP) is involved in the regulation of epithelial secretion and motility in the rat small intestine. The morphology, chemical profiles and proportion of SP-containing enteric neurons in this tissue have been examined by immunohistochemical analysis of whole-mount preparations obtained from colchicine-treated rats. In the submucosal plexus of the duodenum, jejunum and ileum, the proportion of SP-positive neurons is 53%, 51% and 49%, respectively. All SP-positive submucosal neurons are positive for neurofilament 200 (NF-200) and calretinin. Immunoreactivity for calcitonin gene-related peptide (CGRP) is detectable in 55% of the SP-positive submucosal neurons. Some SP-positive submucosal neurons have two or more long processes emerging from an oval or round cell body, a characteristic of the Dogiel type II neuron (type II neuron; a putative intrinsic primary afferent neuron). About one-third of the neurons in the myenteric plexus are positive for SP and a majority of them are NF-200/calretinin-positive type II neurons. Immunoreactivity for the SP receptor neurokinin-1 receptor (NK1R) has been detected mainly in the submucosal and myenteric NF-200-positive neurons, which are expected to contain SP. These neurons possibly stimulate each other via SP release. Most of the submucosal and myenteric neurons, including type II neurons, show immunoreactive for the prostaglandin E2 receptor EP3 receptor (EP3R). Thus, SP/NF-200/calretinin/NK1R/EP3R is the common chemical profile of type II neurons in the rat small intestine. The proportion of SP-immunopositive submucosal neurons (49%–53%) is higher in the rat small intestine than in the colon (≤11%) and around 50% are positive for CGRP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brehmer A, Schrödl F, Neuhuber W (1999) Morphological classifications of enteric neurons—100 years after Dogiel. Anat Embryol (Berl) 200:125–135

    Article  CAS  Google Scholar 

  • Brehmer A, Croner R, Dimmler A, Papadopoulos T, Schrödl F, Neuhuber W (2004) Immunohistochemical characterization of putative primary afferent (sensory) myenteric neurons in human small intestine. Auton Neurosci 112:49–59

    Article  CAS  PubMed  Google Scholar 

  • Brodin E, Sjölund K, Håkanson R, Sundler F (1983) Substance P-containing nerve fibers are numerous in human but not in feline intestinal mucosa. Gastroenterology 85:557–564

    CAS  PubMed  Google Scholar 

  • Cassuto J, Siewert A, Jodal M, Lundgren O (1983) The involvement of intramural nerves in cholera toxin induced intestinal secretion. Acta Physiol Scand 117:195–202

    Article  CAS  PubMed  Google Scholar 

  • Cooke HJ, Sidhu M, Fox P, Wang YZ, Zimmermann EM (1997) Substance P as a mediator of colonic secretory reflexes. Am J Physiol 272:G238–G245

    CAS  PubMed  Google Scholar 

  • Costa M, Furness JB, Llewellyn-Smith IJ, Cuello AC (1981) Projections of substance P-containing neurons within the guinea-pig small intestine. Neuroscience 6:411–424

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Brookes SJ, Hennig GW (2000) Anatomy and physiology of the enteric nervous system. Gut 47(Suppl 4):iv15–iv19

    PubMed  Google Scholar 

  • Dekkers JA, Akkermans LM, Kroese AB (1997) Effects of the inflammatory mediator prostaglandin E2 on myenteric neurons in guinea pig ileum. Am J Physiol 272:G1451–G1456

    CAS  PubMed  Google Scholar 

  • Desaki J, Fujiwara T, Komuro T (1984) A cellular reticulum of fibroblast-like cells in the rat intestine: scanning and transmission electron microscopy. Arch Histol Jpn 47:179–186

    Article  CAS  PubMed  Google Scholar 

  • Ekblad E, Winther C, Ekman R, Håkanson R, Sundler F (1987) Projections of peptide-containing neurons in rat small intestine. Neuroscience 20:169–188

    Article  CAS  PubMed  Google Scholar 

  • Furness JB (2006) The enteric nervous system. Blackwell, Oxford

    Google Scholar 

  • Furuya S, Furuya K (2007) Subepithelial fibroblasts in intestinal villi: roles in intercellular communication. Int Rev Cytol 264:165–223

    Article  CAS  PubMed  Google Scholar 

  • Furuya K, Furuya S, Yamagishi S (1994) Intracellular calcium responses and shape conversions induced by endothelin in cultured subepithelial fibroblasts of rat duodenal villi. Pflugers Arch 428:97–104

    Article  CAS  PubMed  Google Scholar 

  • Furuya K, Sokabe M, Furuya S (2005) Characteristics of subepithelial fibroblasts as a mechano-sensor in the intestine: cell-shape-dependent ATP release and P2Y1 signaling. J Cell Sci 118:3289–3304

    Article  CAS  PubMed  Google Scholar 

  • Giuliani S, Tramontana M, Lecci A, Maggi CA (1996) Tachykinin receptors mediate atropine-resistant rat duodenal reflex contractions in vivo. Naunyn Schmiedebergs Arch Pharmacol 354:327–335

    Article  CAS  PubMed  Google Scholar 

  • Holzer P (1998) Implications of tachykinins and calcitonin gene-related peptide in inflammatory bowel disease. Digestion 59:269–283

    Article  CAS  PubMed  Google Scholar 

  • Johnson PJ, Bornstein JC, Burcher E (1998) Roles of neuronal NK1 and NK3 receptors in synaptic transmission during motility reflexes in the guinea-pig ileum. Br J Pharmacol 124:1375–1384

    Article  CAS  PubMed  Google Scholar 

  • Komuro T, Hashimoto Y (1990) Three-dimensional structure of the rat intestinal wall (mucosa and submucosa). Arch Histol Cytol 53:1–21

    Article  CAS  PubMed  Google Scholar 

  • Larsson MH, Sapnara M, Thomas EA, Bornstein JC, Lindström E, Svensson DJ, Sjövall H (2008) Pharmacological analysis of components of the change in transmural potential difference evoked by distension of rat proximal small intestine in vivo. Am J Physiol Gastrointest Liver Physiol 294:G165–G173

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Gao N, Hu HZ, Liu S, Gao C, Kim G, Ren J, Xia Y, Peck OC, Wood JD (2002) Immunoreactivity of Hu proteins facilitates identification of myenteric neurons in guinea-pig small intestine. Neurogastroenterol Motil 14:197–204

    Article  CAS  PubMed  Google Scholar 

  • Lundgren O (2002) Enteric nerves and diarrhoea. Pharmacol Toxicol 90:109–120

    Article  CAS  PubMed  Google Scholar 

  • Mann PT, Furness JB, Southwell BR (1999a) Choline acetyltransferase immunoreactivity of putative intrinsic primary afferent neurons in the rat ileum. Cell Tissue Res 297:241–248

    Article  CAS  PubMed  Google Scholar 

  • Mann PT, Southwell BR, Furness JB (1999b) Internalisation of the neurokinin 1 receptor in rat myenteric neurons. Neuroscience 91:353–362

    Article  CAS  PubMed  Google Scholar 

  • Manning BP, Sharkey KA, Mawe GM (2002) Effects of PGE2 in guinea pig colonic myenteric ganglia. Am J Physiol Gastrointest Liver Physiol 283:G1388–G1397

    CAS  PubMed  Google Scholar 

  • Mitsui R (2009) Characterisation of calcitonin gene-related peptide-immunoreactive neurons in the myenteric plexus of rat colon. Cell Tissue Res 337:37–43

    Article  CAS  PubMed  Google Scholar 

  • Mitsui R (2010) Immunohistochemical characteristics of submucosal Dogiel type II neurons in rat colon. Cell Tissue Res 340:257–265

    Article  CAS  PubMed  Google Scholar 

  • Mongardi Fantaguzzi C, Thacker M, Chiocchetti R, Furness JB (2009) Identification of neuron types in the submucosal ganglia of the mouse ileum. Cell Tissue Res 336:179–189

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Gershon MD (2000) Activation of intrinsic afferent pathways in submucosal ganglia of the guinea pig small intestine. J Neurosci 20:3295–3309

    CAS  PubMed  Google Scholar 

  • Pataky DM, Curtis SB, Buchan AM (1990) The co-localization of neuropeptides in the submucosa of the small intestine of normal Wistar and non-diabetic BB rats. Neuroscience 36:247–254

    Article  CAS  PubMed  Google Scholar 

  • Patton D, O’Reilly M, Vanner S (2005) Sensory peptide neurotransmitters mediating mucosal and distension evoked neural vasodilator reflexes in guinea pig ileum. Am J Physiol Gastrointest Liver Physiol 289:G785–G790

    Article  CAS  PubMed  Google Scholar 

  • Peterson JW, Whipp SC (1995) Comparison of the mechanisms of action of cholera toxin and the heat-stable enterotoxins of Escherichia coli. Infect Immun 63:1452–1461

    CAS  PubMed  Google Scholar 

  • Phillips RJ, Hargrave SL, Rhodes BS, Zopf DA, Powley TL (2004) Quantification of neurons in the myenteric plexus: an evaluation of putative pan-neuronal markers. J Neurosci Methods 133:99–107

    Article  PubMed  Google Scholar 

  • Rivera LR, Thacker M, Furness JB (2009) High- and medium-molecular-weight neurofilament proteins define specific neuron types in the guinea-pig enteric nervous system. Cell Tissue Res 335:529–538

    Article  CAS  PubMed  Google Scholar 

  • Roza C, Reeh PW (2001) Substance P, calcitonin gene related peptide and PGE2 co-released from the mouse colon: a new model to study nociceptive and inflammatory responses in viscera, in vitro. Pain 93:213–219

    Article  CAS  PubMed  Google Scholar 

  • Schultzberg M, Hökfelt T, Nilsson G, Terenius L, Rehfeld JF, Brown M, Elde R, Goldstein M, Said S (1980) Distribution of peptide- and catecholamine-containing neurons in the gastro-intestinal tract of rat and guinea-pig: immunohistochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin and dopamine beta-hydroxylase. Neuroscience 5:689–744

    Article  CAS  PubMed  Google Scholar 

  • Sternini C, Su D, Gamp PD, Bunnett NW (1995) Cellular sites of expression of the neurokinin-1 receptor in the rat gastrointestinal tract. J Comp Neurol 358:531–540

    Article  CAS  PubMed  Google Scholar 

  • Timmermans JP, Scheuermann DW, Barbiers M, Adriaensen D, Stach W, Van Hee R, De Groodt-Lasseel MH (1992) Calcitonin gene-related peptide-like immunoreactivity in the human small intestine. Acta Anat (Basel) 143:48–53

    Article  CAS  Google Scholar 

  • Turvill JL, Connor P, Farthing MJ (2000) Neurokinin 1 and 2 receptors mediate cholera toxin secretion in rat jejunum. Gastroenterology 119:1037–1044

    CAS  PubMed  Google Scholar 

  • Vanner S, MacNaughton WK (2004) Submucosal secretomotor and vasodilator reflexes. Neurogastroenterol Motil 16(Suppl 1):39–43

    Article  PubMed  Google Scholar 

  • Vannucchi MG, Faussone-Pellegrini MS (2000) NK1, NK2 and NK3 tachykinin receptor localization and tachykinin distribution in the ileum of the mouse. Anat Embryol (Berl) 202:247–255

    Article  CAS  Google Scholar 

  • Weber E, Neunlist M, Schemann M, Frieling T (2001) Neural components of distension-evoked secretory responses in the guinea-pig distal colon. J Physiol (Lond) 536:741–751

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Terumasa Komuro (Waseda University) for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Retsu Mitsui.

Additional information

This study was supported by a Waseda University Grant for Special Research Projects (2009B-285, 2010B-294).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsui, R. Immunohistochemical analysis of substance P-containing neurons in rat small intestine. Cell Tissue Res 343, 331–341 (2011). https://doi.org/10.1007/s00441-010-1080-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1080-7

Keywords

Navigation