Skip to main content
Log in

Synaptogenesis of hippocampal neurons in primary cell culture

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Hippocampal neurons in dissociated cell culture are one of the most extensively used model systems in the field of molecular and cellular neurobiology. Only limited data are however available on the normal time frame of synaptogenesis, synapse number and ultrastructure of excitatory synapses during early development in culture. Therefore, we analyzed the synaptic ultrastructure and morphology and the localization of presynaptic (Bassoon) and postsynaptic (ProSAP1/Shank2) marker proteins in cultures established from rat embryos at embryonic day 19, after 3, 7, 10, 14, and 21 days in culture. First excitatory synapses were identified at day 7 with a clearly defined postsynaptic density and presynaptically localized synaptic vesicles. Mature synapses on dendritic spines were seen from day 10 onward, and the number of synapses steeply increased in the third week. Fenestrated or multiple synapses were found after 14 or 21 days, respectively. So-called dense-core vesicles, responsible for the transport of proteins to the active zone of the presynaptic specialization, were seen on cultivation day 3 and 7 and could be detected in axons and especially in the presynaptic subcompartments. The expression and localization of the presynaptic protein Bassoon and of the postsynaptic molecule ProSAP1/Shank2 was found to correlate nicely with the ultrastructural results. This regular pattern of development and maturation of excitatory synapses in hippocampal culture starting from day 7 in culture should ease the comparison of synapse number and morphology of synaptic contacts in this widely used model system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  • Banker G, Cowan W (1977) Rat hippocampal neurons in dispersed cell culture. Brain Res 126:397–425

    Article  CAS  PubMed  Google Scholar 

  • Banker G, Cowan W (1979) Further observations on hippocampal neurons in dispersed cell cultures. J Comp Neurol 187:469–494

    Article  CAS  PubMed  Google Scholar 

  • Banker G, Waxman A (1988) Hippocampal neurons generate natural shapes in cell culture. In: Lasek R, Black MB (eds) Intrinsic determinants of neuronal form. Liss, New York

    Google Scholar 

  • Bartlett WP, Banker G (1984) An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. II Synaptic relationships. J Neurosci 4:1954–1965

    CAS  PubMed  Google Scholar 

  • Boeckers TM (2006) The postsynaptic density. Cell Tissue Res 326:409–422

    Article  CAS  PubMed  Google Scholar 

  • Boeckers TM, Kreutz MR, Winter C, Zuschratter W, Smalla KH, Sanmarti-Vila L, Wex H, Langnaese K, Bockmann J, Garner CC, Gundelfinger ED (1999) Proline-rich synapse-associated protein-1/cortactin binding protein 1 (ProSAP1/CortBP1) is a PDZ-domain protein highly enriched in the postsynaptic density. J Neurosci 19:6506–6518

    CAS  PubMed  Google Scholar 

  • Boeckers TM, Bockmann J, Kreutz MR, Gundelfinger ED (2002) ProSAP/Shank proteins—a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease. J Neurochem 81:903–910

    Article  CAS  PubMed  Google Scholar 

  • Booher J, Sensenbrenner M (1972) Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rain and human brain in flask cultures. Neurobiology 2:97–105

    CAS  PubMed  Google Scholar 

  • Bresler T, Shapira M, Boeckers T, Dresbach T, Futter M, Garner CC, Rosenblum K, Gundelfinger ED, Ziv NE (2004) Postsynaptic density assembly is fundamentally different from presynaptic active zone assembly. J Neurosci 24:1507–1520

    Article  CAS  PubMed  Google Scholar 

  • Craig AM, Graf ER, Linhoff MW (2006) How to build a central synapse: clues from cell culture. Trends Neurosci 29:8–20

    Article  CAS  PubMed  Google Scholar 

  • Crain B, Cotman C, Taylor D, Lynch G (1973) A quantitative electron microscopic study of synaptogenesis in the dentate gyrus of the rat. Brain Res 7:195–204

    Article  Google Scholar 

  • Deitch JS, Banker GA (1993) An electron microscopic analysis of hippocampal neurons developing in culture: early stages in the emergence of polarity. J Neurosci 13:4301–4315

    CAS  PubMed  Google Scholar 

  • Dieck S tom, Sanmarti-Vila L, Richter K, Kindler S, Soyke A, Wex H, Smalla KH, Kampf U, Franzer JT, Stumm M, Garner CC, Gundelfinger ED (1998) Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals. J Cell Biol 142:499–509

    Article  Google Scholar 

  • Dotti CG, Sullivan CA, Banker G (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8:1454–1468

    CAS  PubMed  Google Scholar 

  • Dresbach T, Torres V, Wittenmayer N, Altrock WD, Zamorano P, Zuschratter W, Nawrotzki R, Ziv NE, Garner CC, Gundelfinger ED (2006) Assembly of active zone precursor vesicles: obligatory trafficking of presynaptic cytomatrix proteins Bassoon and Piccolo via a trans-Golgi compartment. J Biol Chem 81:6038–6047

    Google Scholar 

  • Fletcher TL, De Camilli P, Banker G (1994) Synaptogenesis in hippocampal cultures: evidence indicating that axons and dendrites become competent to form synapses at different stages of neuronal development. J Neurosci 14:6695–6706

    CAS  PubMed  Google Scholar 

  • Friedman HV, Bresler T, Garner CC, Ziv NE (2000) Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27:57–69

    Article  CAS  PubMed  Google Scholar 

  • Frotscher M, Zhao S, Graber W, Drakew A, Studer D (2007) New ways of looking at synapses. Histochem Cell Biol 128:91–96

    Article  CAS  PubMed  Google Scholar 

  • Garner CC, Waites CL, Ziv NE (2006) Synapse development: still looking for the forest, still lost in the trees. Cell Tissue Res 326:249–262

    Article  PubMed  Google Scholar 

  • Gerrow K, Romorini S, Nabi SM, Colicos MA, Sala C, El-Husseini A (2006) A preformed complex of postsynaptic proteins is involved in excitatory synapse development. Neuron 49:457–462

    Article  Google Scholar 

  • Goda Y, Davis GW (2003) Mechanisms of synapse assembly and disassembly. Neuron 40:243–264

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Garner CC (2008) Molecular mechanisms of presynaptic differentiation. Annu Rev Cell Dev Biol 24:237–262

    Article  CAS  PubMed  Google Scholar 

  • Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1:2406–2415

    Article  CAS  PubMed  Google Scholar 

  • Kreienkamp HJ (2008) Scaffolding proteins at the postsynaptic density: shank as the architectural framework. Handb Exp Pharmacol 186:365-380

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Sheng M (2003) Some assembly required: the development of neuronal synapses. Nat Rev Mol Cell Biol 4:833–841

    Article  CAS  PubMed  Google Scholar 

  • Matteoli M, Coco S, Schenk U, Verderio C (2004) Vesicle turnover in developing neurons: how to build a presynaptic terminal. Trends Cell Biol 14:133–140

    Article  CAS  PubMed  Google Scholar 

  • Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, Weinberg RJ, Worley PF, Sheng M (1999) Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23:569–582

    Article  CAS  PubMed  Google Scholar 

  • Papa M, Bundman MC, Greenberger V, Segal M (1995) Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons. J Neurosci 15:1–11

    CAS  PubMed  Google Scholar 

  • Sensenbrenner M, Booher J, Mandel P (1972) Cultivation and growth of dissociated neurons from chick embryo cerebral cortex in the presence of different substrates. Z Zellforsch Mikrosk Anat 117:559–569

    Article  Google Scholar 

  • Shapira M, Zhai RG, Dresbach T, Bresler T, Torres VI, Gundelfinger ED, Ziv NE, Garner CC (2003) Unitary assembly of presynaptic active zones from piccolo-bassoon transport vesicles. Neuron 38:237–252

    Article  CAS  PubMed  Google Scholar 

  • Siksou L, Triller A, Marty S (2009) An emerging view of presynaptic structure from electron microscopic studies. J Neurochem 108:1336–1342

    Article  CAS  PubMed  Google Scholar 

  • Verderio C, Coco S, Pravettoni E, Bacci A, Matteoli M (1999) Synaptogenesis in hippocampal cultures. Cell Mol Life Sci 55:1448–1462

    Article  CAS  PubMed  Google Scholar 

  • Zhai RG, Vardinon-Friedman H, Cases-Langhoff C, Becker B, Gundelfinger ED, Ziv NE, Garner CC (2001) Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 29:131–143

    Article  CAS  PubMed  Google Scholar 

  • Ziv NE, Garner CC (2004) Cellular and molecular mechanisms of presynaptic assembly. Nat Rev Neurosci 5:385–399

    Article  CAS  PubMed  Google Scholar 

  • Ziv NE, Smith SJ (1996) Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17:91–102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Eberhard Schmidt from the Department of Electron Microscopy, University of Ulm for embedding and preparation of the sections for electron microscopy and to Renate Zienecker and Ursula Pika-Hartlaub for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias M. Boeckers.

Additional information

This work was supported by the DFG (SFB 497/B8, Bo 1718/3-1, to T.M.B.) and a grant from the Graduate School for Molecular Medicine Ulm (to A.G.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabrucker, A., Vaida, B., Bockmann, J. et al. Synaptogenesis of hippocampal neurons in primary cell culture. Cell Tissue Res 338, 333–341 (2009). https://doi.org/10.1007/s00441-009-0881-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0881-z

Keywords

Navigation