Skip to main content
Log in

The frontal aslant tract underlies speech fluency in persistent developmental stuttering

Brain Structure and Function Aims and scope Submit manuscript

Abstract

The frontal aslant tract (FAT) is a pathway that connects the inferior frontal gyrus with the supplementary motor area (SMA) and pre-SMA. The FAT was recently identified and introduced as part of a “motor stream” that plays an important role in speech production. In this study, we use diffusion imaging to examine the hypothesis that the FAT underlies speech fluency, by studying its properties in individuals with persistent developmental stuttering, a speech disorder that disrupts the production of fluent speech. We use tractography to quantify the volume and diffusion properties of the FAT in a group of adults who stutter (AWS) and fluent controls. Additionally, we use tractography to extract these measures from the corticospinal tract (CST), a well-known component of the motor system. We compute diffusion measures in multiple points along the tracts, and examine the correlation between these diffusion measures and behavioral measures of speech fluency. Our data show increased mean diffusivity in bilateral FAT of AWS compared with controls. In addition, the results show regions within the left FAT and the left CST where diffusivity values are increased in AWS compared with controls. Last, we report that in AWS, diffusivity values measured within sub-regions of the left FAT negatively correlate with speech fluency. Our findings are the first to relate the FAT with fluent speech production in stuttering, thus adding to the current knowledge of the functional role that this tract plays in speech production and to the literature of the etiology of persistent developmental stuttering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akers D (2006) CINCH: a cooperatively designed marking interface for 3D pathway selection. Paper presented at the User Interface Software and Technology meeting, Montreux

  • Alexander AL, Lee JE, Lazar M, Field AS (2007) Diffusion tensor imaging of the brain. Neurotherapeutics 4:316–329

    Article  PubMed Central  PubMed  Google Scholar 

  • Alm PA (2004) Stuttering and the basal ganglia circuits: a critical review of possible relations. J Commun Disord 37:325–369

    Article  PubMed  Google Scholar 

  • Ambrose NG, Yairi E (1999) Normative disfluency data for early childhood stuttering. J Speech Lang Hear Res 42:895–909

    Article  CAS  PubMed  Google Scholar 

  • Amir O, Levine-Yundof R (2013) Listeners’ attitude toward people with dysphonia. J Voice 27:524.e1–524.e10

  • Arnstein D, Lakey B, Compton RJ, Kleinow J (2011) Preverbal error-monitoring in stutterers and fluent speakers. Brain Lang 116:105–115

    Article  PubMed  Google Scholar 

  • Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ (2008) AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med 59:1347–1354

    Article  PubMed Central  PubMed  Google Scholar 

  • Bakhtiari R, Boliek C, Cummine J (2014) Investigating the contribution of ventral-lexical and dorsal-sublexical pathways during reading in bilinguals. Front Hum Neurosci 8:507

    Article  PubMed Central  PubMed  Google Scholar 

  • Basser PJ, Pierpaoli S (1996) Microstructural and physiological features of tissues elucidated by quantitative diffusion tensor MRI. J Magn Reson 111:209–219

    Article  CAS  Google Scholar 

  • Basser PJ, Pajevic S, Pierpaoli S, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632

    Article  CAS  PubMed  Google Scholar 

  • Beal DS, Gracco VL, Lafaille SJ, De Nil LF (2007) Voxel-based morphometry of auditory and speech-related cortex in stutterers. NeuroReport 18:1257–1260

    Article  PubMed  Google Scholar 

  • Beal DS, Gracco VL, Brettschneider J, Kroll RM, De Nil LF (2013) A voxel-based morphometry (VBM) analysis of regional grey and white matter volume abnormalities within the speech production network of children who stutter. Cortex 49:2151–2216

    Article  PubMed Central  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57:289–300

    Google Scholar 

  • Ben-Shachar M, Dougherty RF, Wandell BA (2007) White matter pathways in reading. Curr Opin Neurobiol 17:258–270

    Article  CAS  PubMed  Google Scholar 

  • Biermann-Ruben K, Salmelin R, Schnitzler A (2005) Right rolandic activation during speech perception in stutterers: a MEG study. Neuroimage 25:793–801

    Article  PubMed  Google Scholar 

  • Bloodstein O, Ratner NB (2008) A handbook on stuttering, 6th edn. Delmar, Stamford

    Google Scholar 

  • Braun A et al (1997) Altered patterns of cerebral activity during speech and language production in developmental stuttering. An H2(15)O positron emission tomography study. Brain 120:761–784

    Article  PubMed  Google Scholar 

  • Brown S, Ingham RJ, Ingham JC, Laird AR, Fox PT (2005) Stuttered and fluent speech production: an ALE meta-analysis of functional neuroimaging studies. Hum Brain Mapp 25:105–117

    Article  PubMed  Google Scholar 

  • Burzynska AZ, Preuschhof C, Bäckman L, Nyberg L, Li S-C, Lindenberger U, Heekeren HR (2010) Age-related differences in white matter microstructure: region-specific patterns of diffusivity. Neuroimage 49:2104–2112

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Tourville JA, Beal DS, Perkell JS, Guenther FH, Ghosh SS (2014) Diffusion imaging of cerebral white matter in persons who stutter: evidence for network-level anomalies. Front Hum Neurosci 8:54

    Article  PubMed Central  PubMed  Google Scholar 

  • Catani M et al (2012) Short frontal lobe connections of the human brain. Cortex 48:273–291

    Article  PubMed  Google Scholar 

  • Catani M et al (2013) A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain 136:2619–2628

    Article  PubMed Central  PubMed  Google Scholar 

  • Chang S-E, Erickson KI, Ambrose NG, Hasegawa-Johnson MA, Ludlow CL (2008) Brain anatomy differences in childhood stuttering. Neuroimage 39:1333–1344

    Article  PubMed Central  PubMed  Google Scholar 

  • Chang S-E, Kenney MK, Loucks TMJ, Ludlow CL (2009) Brain activation abnormalities during speech and non-speech in stuttering speakers. Neuroimage 46:201–212

    Article  PubMed Central  PubMed  Google Scholar 

  • Chang S-E, Synnestvedt A, Ostuni J, Ludlow CL (2010) Similarities in speech and white matter characteristics in idiopathic developmental stuttering and adult-onset stuttering. J Neurolinguist 23:455–469

    Article  Google Scholar 

  • Chang S-E, Horwitz B, Ostuni J, Reynolds R, Ludlow CL (2011) Evidence of left inferior frontal premotor structural and functional connectivity deficits in adults who stutter. Cereb Cortex 21:2507–2518

    Article  PubMed Central  PubMed  Google Scholar 

  • Cogan GB, Thesen T, Carlson C, Doyle W, Devinsky O, Pesaran B (2014) Sensory-motor transformations for speech occur bilaterally. Nature 507:94–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Connally EL, Ward D, Howell P, Watkins KE (2013) Disrupted white matter in language and motor tracts in developmental stuttering. Brain Lang 6:256–266

    Google Scholar 

  • Corder GW, Foreman DI (2009) Nonparametric statistics for non-statisticians: a step-by-step approach. Wiley, Hoboken

    Book  Google Scholar 

  • Cykowski MD, Fox PT, Ingham RJ, Ingham JC, Robin DA (2010) A study of the reproducibility and etiology of diffusion anisotropy differences in developmental stuttering: a potential role for impaired myelination. Neuroimage 52:1495–1504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Santis S, Drakesmith M, Bells S, Assaf Y, Jones DK (2014) Why diffusion tensor MRI does well only some of the time: variance and covariance of white matter tissue microstructure attributes in the living human brain. Neuroimage 89:35–44

    Article  PubMed Central  PubMed  Google Scholar 

  • Dick AS, Bernal B, Tremblay P (2013) The language connectome new pathways, new concepts. Neuroscientist 20(5):453–467

    Article  PubMed  Google Scholar 

  • Dosenbach NU et al (2006) A core system for the implementation of task sets. Neuron 50:799–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dougherty RF, Ben-Shachar M, Deutsch GK, Hernandez A, Fox GR, Wandell BA (2007) Temporal-callosal pathway diffusivity predicts phonological skills in children. PNAS 104:8556–8561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eckert MA, Menon V, Walczak A, Ahlstrom J, Denslow S, Horwitz A, Dubno JR (2009) At the heart of the ventral attention system: the right anterior insula. Hum Brain Mapp 30:2530–2541

    Article  PubMed Central  PubMed  Google Scholar 

  • Finkelstein M, Amir O (2013) Speaking rate among professional radio newscasters: Hebrew speakers. Stud Media Commun 1:131–139

    Article  Google Scholar 

  • Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL (2011) Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54:313–327

    Article  PubMed Central  PubMed  Google Scholar 

  • Ford A, McGregor KM, Case K, Crosson B, White KD (2010) Structural connectivity of Broca’s area and medial frontal cortex. Neuroimage 52:1230–1237

    Article  PubMed Central  PubMed  Google Scholar 

  • Foundas AL, Bollich AM, Feldman J, Corey DM, Hurley M, Lemen LC, Heilman KM (2004) Aberrant auditory processing and atypical planum temporale in developmental stuttering. Neurology 63:1640–1646

    Article  CAS  PubMed  Google Scholar 

  • Fox PT, Ingham RJ, Ingham JC, Zamarripa F, Xiong JH, Lancaster JL (2000) Brain correlates of stuttering and syllable production. A PET performance-correlation analysis. Brain 123:1985–2004

    Article  PubMed  Google Scholar 

  • Friston KJ, Ashburner J (2004) Generative and recognition models for neuroanatomy. Neuroimage 23:21–24

    Article  CAS  PubMed  Google Scholar 

  • Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8:393–402

    Article  CAS  PubMed  Google Scholar 

  • Horowitz A, Barazany D, Tavor I, Bernstein M, Yovel G, Assaf Y (2014) In vivo correlation between axon diameter and conduction velocity in the human brain. Brain Struct Funct, 1–12

  • Jäncke L, Hänggi J, Steinmetz H (2004) Morphological brain differences between adult stutterers and non-stutterers. BMC Neurol 4:23

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones DK (2004) The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med 51:807–815

    Article  PubMed  Google Scholar 

  • Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254

    Article  PubMed  Google Scholar 

  • Kell CA, Neumann K, Kriegstein KV, Posenenske C, Gudenberg AWV, Euler H, Giraud A-L (2009) How the brain repairs stuttering. Brain 132:2747–2760

    Article  PubMed  Google Scholar 

  • Kushner HI (2012) Retraining left-handers and the aetiology of stuttering: the rise and fall of an intriguing theory. Laterality: asymmetries of body. Brain Cogn 17:673–693

    Google Scholar 

  • Lawes INC, Barrick TR, Murugam V, Spierings N, Evans DR, Song M, Clark CA (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage 39:62–79

    Article  PubMed  Google Scholar 

  • Lebel C, Benner T, Beaulieu C (2012a) Six is enough? Comparison of diffusion parameters measured using six or more diffusion-encoding gradient directions with deterministic tractography. Magn Reson Med 68:474–483

    Article  PubMed  Google Scholar 

  • Lebel C, Gee M, Camicioli R, Wieler M, Martin W, Beaulieu C (2012b) Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage 60:340–352

    Article  CAS  PubMed  Google Scholar 

  • Leemans A, Jones DK (2009) The B-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med 61:1336–1349

    Article  PubMed  Google Scholar 

  • Lu C et al (2010a) The neural substrates for atypical planning and execution of word production in stuttering. Exp Neurol 221(1):146–156

    Article  PubMed  Google Scholar 

  • Lu C et al (2010b) Altered effective connectivity and anomalous anatomy in the basal ganglia-thalamocortical circuit of stuttering speakers. Cortex 46:49–67

    Article  PubMed  Google Scholar 

  • MacDonald CM, Mallard A (1979) Word-by-word analysis of observer agreement utilizing audio and audiovisual techniques. J Fluency Disord 4:23–28

    Article  Google Scholar 

  • Mezer A et al (2013) Quantifying the local tissue volume and composition in individual brains with MRI. Nat Med 19:1667–1672

    Article  CAS  PubMed  Google Scholar 

  • Moore WH Jr (1984) Central nervous system characteristics of stutterers. In: Curlee R, Perkins WH (eds) Nature and treatment of stuttering: new directions. College-Hill Press, San Diego

    Google Scholar 

  • Mori S, Crain BJ, Chacko V, Van Zijl P (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    Article  CAS  PubMed  Google Scholar 

  • Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edingburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Perkins WH, Kent RD, Curlee RF (1991) A theory of neuropsycholinguistic function in stuttering. J Speech Hear Res 34:734–752

    Article  CAS  PubMed  Google Scholar 

  • Postma A, Kolk H (1992) Error monitoring in people who stutter: evidence against auditory feedback defect theories. J Speech Lang Hear Res 35:1024–1032

    Article  CAS  Google Scholar 

  • Postma A, Kolk H (1993) The covert repair hypothesis: prearticulatory repair process in normal and sttuttered disfluencies. J Speech Hear Res 36:49–59

    Article  Google Scholar 

  • Preibisch C, Neumann K, Raab P, Euler H, von Gudenberg A, Lanfermann H, Giraud A (2003) Evidence for compensation for stuttering by the right frontal operculum. Neuroimage 20:1356–1364

    Article  PubMed  Google Scholar 

  • Rhode GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli S (2004) Comprehensive approach for correction of motion and disortion in diffusion-weighted MRI. Magn Reson Med 51:103–114

    Article  Google Scholar 

  • Riley G (1994) Stuttering severity instrument for children and adults, 3rd edn. Pro-Ed, Austin

    Google Scholar 

  • Rochman D, Amir O (2013) Examining in-session expressions of emotions with speech/vocal acoustic measures: an introductory guide. Psychother Res 23:381–393

    Article  PubMed  Google Scholar 

  • Sasson E, Doniger G, Pasternak O, Assaf Y (2010) Structural correlates of memory performance with diffusion tensor imaging. Neuroimage 50:1231–1242

    Article  PubMed  Google Scholar 

  • Sasson E, Doniger GM, Pasternak O, Tarrasch R, Assaf Y (2012) Structural correlates of cognitive domains in normal aging with diffusion tensor imaging. Brain Struct Funct 217:503–515

    Article  PubMed  Google Scholar 

  • Sasson E, Doniger GM, Pasternak O, Tarrasch R, Assaf Y (2013) White matter correlates of cognitive domains in normal aging with diffusion tensor imaging. Front Neurosci 7:32

    Article  PubMed Central  PubMed  Google Scholar 

  • Scantlebury N et al (2014) Relations between white matter maturation and reaction time in childhood. J Int Neuropsychol Soc 20:99–112

    Article  PubMed  Google Scholar 

  • Schmierer K et al (2007) Diffusion tensor imaging of post mortem multiple sclerosis brain. Neuroimage 35:467–477

    Article  PubMed Central  PubMed  Google Scholar 

  • Sheskin DJ (2003) Handbook of parametric and nonparametric statistical procedures, 3rd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Smith A (1999) Stuttering: a unified approach to a multifactorial, dynamic disorder. In: Ratner NB, Healey EC (eds) Stuttering reaserch and practice: bridging the gap. Lawrence Erlbaum Associates Inc, NJ

    Google Scholar 

  • Smith A, Goffman L, Sasisekaran J, Weber-Fox C (2012) Language and motor abilities of preschool children who stutter: evidence from behavioral and kinematic indices of nonword repetition performance. J Fluency Disord 37:344–358

    Article  PubMed Central  PubMed  Google Scholar 

  • Sommer M, Koch MA, Paulus W, Weiller C, Büchel C (2002) Disconnection of speech-relevant brain areas in persistent developmental stuttering. Lancet 360:380–383

    Article  PubMed  Google Scholar 

  • Stikov N, Perry LM, Mezer A, Rykhlevskaia E, Wandell BA, Pauly JM, Dougherty RF (2011) Bound pool fractions complement diffusion measures to describe white matter micro and macrostructure. Neuroimage 54:1112–1121

    Article  PubMed Central  PubMed  Google Scholar 

  • Thiebaut de Schotten M et al (2011) Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage 54:49–59

    Article  PubMed  Google Scholar 

  • Travis L (1931) Speech pathology. Appelton-Century, New York

    Google Scholar 

  • Tzourio-Mazoyer N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289

    Article  CAS  PubMed  Google Scholar 

  • Vaden KI, Kuchinsky SE, Cute SL, Ahlstrom JB, Dubno JR, Eckert MA (2013) The cingulo-opercular network provides word-recognition benefit. J Neurosci 33:18979–18986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vassal F, Boutet C, Lemaire J-J, Nuti C (2014) New insights into the functional significance of the frontal aslant tract-An anatomo-functional study using intraoperative electrical stimulations combined with diffusion tensor imaging-based fiber tracking. Br J Neurosurg 28:685–687

    Article  PubMed  Google Scholar 

  • Vos SB, Jones DK, Viergever MA, Leemans A (2011) Partial volume effect as a hidden covariate in DTI analyses. Neuroimage 55:1566–1576

    Article  PubMed  Google Scholar 

  • Vos SB, Jones DK, Jeurissen B, Viergever MA, Leemans A (2012) The influence of complex white matter architecture on the mean diffusivity in diffusion tensor MRI of the human brain. Neuroimage 59:2208–2216

    Article  PubMed  Google Scholar 

  • Wakana S et al (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36:630–644

    Article  PubMed Central  PubMed  Google Scholar 

  • Watkins KE, Smith SM, Davis S, Howell P (2008) Structural and functional abnormalities of the motor system in developmental stuttering. Brain 131:50–59

    Article  PubMed Central  PubMed  Google Scholar 

  • Williams DE, Wark M, Minifie FD (1963) Ratings of stuttering by audio, visual, and audiovisual cues. J Speech Lang Hear Res 6:91

    Article  CAS  Google Scholar 

  • Xuan Y et al (2012) Resting-state brain activity in adult males who stutter. PLoS ONE 7:e30570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yairi E, Ambrose NG (2005) Early childhood stuttering for clinicians by clinicians. PRO-ED, Austin

    Google Scholar 

  • Yeatman JD, Dougherty RF, Rykhlevskaia E, Sherbondy AJ, Deutsch GK, Wandell BA, Ben-Shachar M (2011) Anatomical properties of the arcuate fasciculus predict phonological and reading skills in children. J Cogn Neurosci 23:3304–3317

    Article  PubMed Central  PubMed  Google Scholar 

  • Yeatman JD, Dougherty RF, Myall NJ, Wandell BA, Feldman HM (2012) Tract profiles of white matter properties: automating fiber-tract quantification. PLoS ONE 7:e49790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Israel Science Foundation (ISF grant 513/11 awarded to M.B.-S and O.A) and by the Israeli Center of Research Excellence in Cognition (I-CORE Program 51/11 of the Planning and Budgeting Committee). O.C. was supported by the Israeli Ministry of Immigrant Absorption. We thank the Israeli Stuttering Association (AMBI) for their help with participant recruitment. We thank the team at the Wohl institute for advanced imaging in Tel Aviv Sourasky Medical Center, for their assistance with protocol setup and MRI scanning. We thank Jason Yeatman for his assistance with adjustments in the AFQ code. Finally, we are grateful to Prof. Yaniv Assaf and to Maya Yablonski for their helpful comments.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vered Kronfeld-Duenias.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 340 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kronfeld-Duenias, V., Amir, O., Ezrati-Vinacour, R. et al. The frontal aslant tract underlies speech fluency in persistent developmental stuttering. Brain Struct Funct 221, 365–381 (2016). https://doi.org/10.1007/s00429-014-0912-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0912-8

Keywords

Navigation