Skip to main content

Advertisement

Log in

Possible anatomical pathways for short-latency multisensory integration processes in primary sensory cortices

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Multisensory integration does not only recruit higher-level association cortex, but also low-level and even primary sensory cortices. Here, we will describe and quantify two types of anatomical pathways, a thalamocortical and a corticocortical that possibly underlie short-latency multisensory integration processes in the primary auditory (A1), somatosensory (S1), and visual cortex (V1). Results were obtained from Mongolian gerbils, a common model-species in neuroscience, using simultaneous injections of different retrograde tracers into A1, S1, and V1. Several auditory, visual, and somatosensory thalamic nuclei project not only to the primary sensory area of their own (matched) but also to areas of other (non-matched) modalities. The crossmodal output ratios of these nuclei, belonging to both core and non-core sensory pathways, vary between 0.4 and 63.5 % of the labeled neurons. Approximately 0.3 % of the sensory thalamic input to A1, 5.0 % to S1, and 2.1 % to V1 arise from non-matched nuclei. V1 has most crossmodal corticocortical connections, projecting strongest to S1 and receiving a similar amount of moderate inputs from A1 and S1. S1 is mainly interconnected with V1. A1 has slightly more projections to V1 than S1, but gets just faint inputs from there. Concerning the layer-specific distribution of the retrogradely labeled somata in cortex, V1 provides the most pronounced feedforward-type outputs and receives (together with S1) most pronounced feedback-type inputs. In contrast, A1 has most pronounced feedback-type outputs and feedforward-type inputs in this network. Functionally, the different sets of thalamocortical and corticocortical connections could underlie distinctive types of integration mechanisms for different modality pairings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. As reviewed by Driver and Noesselt (2008), multisensory interplay reveals crossmodal influences on sensory-specific brain areas, in particular of the cortex. The authors suggest, that there are at least three possible neuronal pathways mediating this multisensory interplay, which are not mutually exclusive: Account A (for "All multisensory): Direct feedforward influences between A1, V1, and S1, which might either arise subcortically at thalamic levels (account A.I) and/or via corticocortical connections directly between the primary sensory cortices (account A.II). Account B (for new Bimodal brain areas): Some multisensory regions may exist near classic unisensory regions. Account C (for "Critical role of feedback circuitry"): Feedback connections may exist from higher-level multisensory regions back to lower-level areas that are (predominantly) sensory-specific apart from these feedback influences. This feedback can also be mediated by thalamo-cortico-thalamic loops (see also Sherman and Guillery 2011). In the present study, we will largely provide evidence for the first possibility (account A).

Abbreviations

A1:

Primary auditory cortex

APTV:

Anterior pretectal nucleus, ventral division

AuD:

Secondary auditory cortex, dorsal

AuV:

Secondary auditory cortex, ventral

AV:

Anteroventral thalamic nucleus

BIC:

Brachium of the inferior colliculus

bsc:

Brachium of the superior colliculus

cp:

Cerebral peduncle

CPu:

Caudate putamen

d:

Dorsal

DLG:

Dorsal lateral geniculate nucleus

ec:

External capsule

FDA:

Fluorescein-labeled dextran amine

fi:

Fimbria hippocampus

hbc:

Habenular commissure

HF:

Hippocampus

HL:

Hindlimb area

ic:

Internal capsule

InG:

Intermediate gray layer of the superior colliculus

InWh:

Intermediate white layer of the superior colliculus

l:

Lateral

LD:

Laterodorsal thalamic nucleus

LP:

Lateral posterior thalamic nucleus

m:

Medial

M1/2:

Primary/secondary motor cortex

MGB:

Medial geniculate body

MGD/M/V:

MGB, dorsal/medial/ventral division

ml:

Medial lemniscus

MV:

Mean value

MZMG:

Marginal zone of MGB

Op:

Optic nerve layer of the superior colliculus

opt:

Optic tract

pc:

Posterior commissure

PLi:

Posterior limitans thalamic nucleus

Po:

Posterior thalamic nuclear group

r:

Rostral

RSD:

Retrosplenial dysgranular cortex

Rt:

Reticular thalamic nucleus

S1/2:

Primary/secondary somatosensory cortex

SG:

Suprageniculate nucleus

SNR:

Substania nigra, reticular part

SuG:

Superficial gray layer of the superior colliculus

TMRDA:

Tetramethylrhodamine-labeled dextran amine

v:

Ventral

V1/2:

Primary/secondary visual cortex

VA:

Ventral anterior thalamic nucleus

VL:

Ventrolateral thalamic nucleus

VLG:

Ventral lateral geniculate nucleus

VM:

Venteromedial thalalamic nucleus

VPL:

Ventral posterolateral thalamic nucleus

VPM:

Ventral posteromedial thalamic nucleus

ZI:

Zona incerta

References

  • Allison T, McCarthy G, Wood CC, Jones SJ (1991) Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain 114:2465–2503

    PubMed  Google Scholar 

  • Banks MI, Uhlrich DJ, Smith PH, Krause BM, Manning KA (2011) Descending projections from extrastriate visual cortex modulate responses of cells in primary auditory cortex. Cereb Cortex 21:2620–2638

    PubMed Central  PubMed  Google Scholar 

  • Barnes SJ, Finnerty GT (2010) Sensory experience and cortical rewiring. Neuroscientist 16:186–198

    PubMed  Google Scholar 

  • Barone P, Dehay C, Berland M, Bullier J, Kennedy H (1995) Developmental remodeling of primate visual cortical pathways. Cereb Cortex 5:22–38

    CAS  PubMed  Google Scholar 

  • Benedek G, Pereny J, Kovacs G, Fischer-Szatmari L, Katoh YY (1997) Visual, somatosensory, auditory and nociceptive modality properties in the feline suprageniculate nucleus. Neuroscience 78:179–189

    CAS  PubMed  Google Scholar 

  • Bezdudnaya T, Keller A (2008) Laterodorsal nucleus of the thalamus: a processor of somatosensory inputs. J Comp Neurol 507:1979–1989

    PubMed Central  PubMed  Google Scholar 

  • Bizley JK, Nodal FR, Bajo VM, Nelken I, King AJ (2007) Physiological and anatomical evidence for multisensory interactions in auditory cortex. Cereb Cortex 17:2172–2189

    PubMed  Google Scholar 

  • Bonath B, Noesselt T, Martinez A, Mishra J, Schwiecker K, Heinze HJ, Hillyard SA (2007) Neural basis of the ventriloquist illusion. Curr Biol 17:1697–1703

    CAS  PubMed  Google Scholar 

  • Bonath B, Tyll S, Budinger E, Krauel K, Hopf JM, Noesselt T (2013) Task-demands and audio-visual stimulus configurations modulate neural activity in the human thalamus. Neuroimage 66:110–118

    PubMed  Google Scholar 

  • Bordi F, LeDoux JE (1994a) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. I. Acoustic discharge patterns and frequency receptive fields. Exp Brain Res 98:261–274

    CAS  PubMed  Google Scholar 

  • Bordi F, LeDoux JE (1994b) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. II. Cells receiving convergent auditory and somatosensory inputs and cells antidromically activated by amygdala stimulation. Exp Brain Res 98:275–286

    CAS  PubMed  Google Scholar 

  • Bronchti G, Heil P, Sadka R, Hess A, Scheich H, Wollberg Z (2002) Auditory activation of “visual” cortical areas in the blind mole rat (Spalax ehrenbergi). Eur J Neurosci 16:311–329

    PubMed  Google Scholar 

  • Brosch M, Selezneva E, Scheich H (2005) Nonauditory events of a behavioral procedure activate auditory cortex of highly trained monkeys. J Neurosci 25:6797–6806

    CAS  PubMed  Google Scholar 

  • Brueckner G, Seeger G, Brauer K, Härtig W, Kacza J, Bigl V (1994) Cortical areas are revealed by distribution patterns of proteoglycan components and parvalbumin in the Mongolian gerbil and rat. Brain Res 658:67–86

    CAS  Google Scholar 

  • Budinger E, Scheich H (2009) Anatomical connections suitable for the direct processing of neuronal information of different modalities via the rodent primary auditory cortex. Hear Res 258:16–27

    PubMed  Google Scholar 

  • Budinger E, Heil P, Scheich H (2000a) Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections. Eur J Neurosci 12:2425–2451

    CAS  PubMed  Google Scholar 

  • Budinger E, Heil P, Scheich H (2000b) Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). IV. Connections with anatomically characterized subcortical structures. Eur J Neurosci 12:2452–2474

    CAS  PubMed  Google Scholar 

  • Budinger E, Heil P, Hess A, Scheich H (2006) Multisensory processing via early cortical stages: connections of the primary auditory cortical field with other sensory systems. Neuroscience 143:1065–1083

    CAS  PubMed  Google Scholar 

  • Budinger E, Laszcz A, Lison H, Scheich H, Ohl FW (2008) Non-sensory cortical and subcortical connections of the primary auditory cortex in Mongolian gerbils: bottom-up and top-down processing of neuronal information via field AI. Brain Res 1220:2–32

    CAS  PubMed  Google Scholar 

  • Budinger E, Brosch M, Scheich H, Mylius J (2013) The subcortical auditory structures in the Mongolian gerbil: II. Frequency-related topography of the connections with cortical field AI. J Comp Neurol 521:2772–2797

    PubMed  Google Scholar 

  • Busse L, Roberts KC, Crist RE, Weissman DH, Woldorff MG (2005) The spread of attention across modalities and space in a multisensory object. Proc Natl Acad Sci USA 102:18751–18756

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cahill L, Ohl F, Scheich H (1996) Alteration of auditory cortex activity with a visual stimulus through conditioning: a 2-deoxyglucose analysis. Neurobiol Learn Mem 65:213–222

    CAS  PubMed  Google Scholar 

  • Calvert GA, Brammer MJ, Bullmore ET, Campbell R, Iversen SD, David AS (1999) Response amplification in sensory-specific cortices during crossmodal binding. NeuroReport 10:2619–2623

    CAS  PubMed  Google Scholar 

  • Camalier CR, D’Angelo WR, Sterbing-D’Angelo SJ, de la Mothe LA, Hackett TA (2012) Neural latencies across auditory cortex of macaque support a dorsal stream supramodal timing advantage in primates. Proc Natl Acad Sci USA 109:18168–18173

    PubMed Central  CAS  PubMed  Google Scholar 

  • Campi KL, Karlen SJ, Bales KL, Krubitzer L (2007) Organization of sensory neocortex in prairie voles (Microtus ochrogaster). J Comp Neurol 502:414–426

    PubMed  Google Scholar 

  • Campi KL, Bales KL, Grunewald R, Krubitzer L (2010) Connections of auditory and visual cortex in the prairie vole (Microtus ochrogaster): evidence for multisensory processing in primary sensory areas. Cereb Cortex 20:89–108

    PubMed Central  PubMed  Google Scholar 

  • Cappe C, Barone P (2005) Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey. Eur J Neurosci 22:2886–2902

    PubMed  Google Scholar 

  • Cappe C, Morel A, Barone P, Rouiller EM (2009a) The thalamocortical projection systems in primate: an anatomical support for multisensory and sensorimotor interplay. Cereb Cortex 19:2025–2037

    PubMed Central  PubMed  Google Scholar 

  • Cappe C, Rouiller EM, Barone P (2009b) Multisensory anatomical pathways. Hear Res 258:28–36

    CAS  PubMed  Google Scholar 

  • Cappe C, Thut G, Romei V, Murray MM (2010) Auditory-visual multisensory interactions in humans: timing, topography, directionality, and sources. J Neurosci 30:12572–12580

    CAS  PubMed  Google Scholar 

  • Chandler HC, King V, Corwin JV, Reep RL (1992) Thalamocortical connections of rat posterior parietal cortex. Neurosci Lett 143:237–242

    CAS  PubMed  Google Scholar 

  • Charbonneau V, Laramee ME, Boucher V, Bronchti G, Boire D (2012) Cortical and subcortical projections to primary visual cortex in anophthalmic, enucleated and sighted mice. Eur J Neurosci 36:2949–2963

    PubMed  Google Scholar 

  • Clavagnier S, Falchier A, Kennedy H (2004) Long-distance feedback projections to area V1: implications for multisensory integration, spatial awareness, and visual consciousness. Cogn Affect Behav Neurosci 4:117–126

    PubMed  Google Scholar 

  • Clemo HR, Sharma GK, Allman BL, Meredith MA (2008) Auditory projections to extrastriate visual cortex: connectional basis for multisensory processing in ‘unimodal’ visual neurons. Exp Brain Res 191:37–47

    PubMed  Google Scholar 

  • Cruikshank SJ, Edeline JM, Weinberger NM (1992) Stimulation at a site of auditory-somatosensory convergence in the medial geniculate nucleus is an effective unconditioned stimulus for fear conditioning. Behav Neurosci 106:471–483

    CAS  PubMed  Google Scholar 

  • De la Mothe LA, Blumell S, Kajikawa Y, Hackett TA (2006) Thalamic connections of the auditory cortex in marmoset monkeys: core and medial belt regions. J Comp Neurol 496:72–96

    PubMed  Google Scholar 

  • Donoghue JP, Kerman KL, Ebner FF (1979) Evidence for two organizational plans within the somatic sensory-motor cortex of the rat. J Comp Neurol 183:647–663

    CAS  PubMed  Google Scholar 

  • Driver J, Noesselt T (2008) Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments. Neuron 57:11–23

    PubMed Central  CAS  PubMed  Google Scholar 

  • Espinosa JS, Stryker MP (2012) Development and plasticity of the primary visual cortex. Neuron 75:230–249

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fabre-Thorpe M, Vievard A, Buser P (1986) Role of the extra-geniculate pathway in visual guidance. II. Effects of lesioning the pulvinar-lateral posterior thalamic complex in the cat. Exp Brain Res 62:596–606

    CAS  PubMed  Google Scholar 

  • Fabri M, Burton H (1991a) Ipsilateral cortical connections of primary somatic sensory cortex in rats. J Comp Neurol 311:405–424

    CAS  PubMed  Google Scholar 

  • Fabri M, Burton H (1991b) Topography of connections between primary somatosensory cortex and posterior complex in rat: a multiple fluorescent tracer study. Brain Res 538:351–357

    CAS  PubMed  Google Scholar 

  • Falchier A, Clavagnier S, Barone P, Kennedy H (2002) Anatomical evidence of multimodal integration in primate striate cortex. J Neurosci 22:5749–5759

    CAS  PubMed  Google Scholar 

  • Falchier A, Schroeder CE, Hackett TA, Lakatos P, Nascimento-Silva S, Ulbert I, Karmos G, Smiley JF (2010) Projection from visual areas V2 and prostriata to caudal auditory cortex in the monkey. Cereb Cortex 20:1529–1538

    PubMed Central  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    CAS  PubMed  Google Scholar 

  • Fishman MC, Michael P (1973) Integration of auditory information in the cat’s visual cortex. Vision Res 13:1415–1419

    CAS  PubMed  Google Scholar 

  • Foxe JJ, Morocz IA, Murray MM, Higgins BA, Javitt DC, Schroeder CE (2000) Multisensory auditory-somatosensory interactions in early cortical processing revealed by high-density electrical mapping. Brain Res Cogn Brain Res 10:77–83

    CAS  PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Academic Press, Hong Kong

    Google Scholar 

  • Fu S, Fan S, Chen L (2003) Event-related potentials reveal involuntary processing of orientation changes in the visual modality. Psychophysiology 40:770–775

    PubMed  Google Scholar 

  • Ghazanfar AA, Schroeder CE (2006) Is neocortex essentially multisensory? Trends Cogn Sci 10:278–285

    PubMed  Google Scholar 

  • Ghazanfar AA, Maier JX, Hoffman KL, Logothetis NK (2005) Multisensory integration of dynamic faces and voices in rhesus monkey auditory cortex. J Neurosci 25:5004–5012

    CAS  PubMed  Google Scholar 

  • Giard MH, Peronnet F (1999) Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. J Cogn Neurosci 11:473–490

    CAS  PubMed  Google Scholar 

  • Goldschmidt J, Zuschratter W, Scheich H (2004) High-resolution mapping of neuronal activity by thallium autometallography. Neuroimage 23:638–647

    PubMed  Google Scholar 

  • Groenewegen HJ, Witter MP (2004) Thalamus. In: Paxinos G (ed) The rat nervous system. Elsevier Academic Press, San Diego, pp 407–453

    Google Scholar 

  • Hall AJ, Lomber SG (2008) Auditory cortex projections target the peripheral field representation of primary visual cortex. Exp Brain Res 190:413–430

    PubMed  Google Scholar 

  • Heimel JA, Van Hooser SD, Nelson SB (2005) Laminar organization of response properties in primary visual cortex of the gray squirrel (Sciurus carolinensis). J Neurophysiol 94:3538–3554

    PubMed  Google Scholar 

  • Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888

    CAS  PubMed  Google Scholar 

  • Hess A, Stiller D, Kaulisch T, Heil P, Scheich H (2000) New insights into the hemodynamic blood oxygenation level-dependent response through combination of functional magnetic resonance imaging and optical recording in gerbil barrel cortex. J Neurosci 20:3328–3338

    CAS  PubMed  Google Scholar 

  • Hicks TP, Stark CA, Fletcher WA (1986) Origins of afferents to visual suprageniculate nucleus of the cat. J Comp Neurol 246:544–554

    CAS  PubMed  Google Scholar 

  • Hoefer M, Tyll S, Kanowski M, Brosch M, Schoenfeld MA, Heinze HJ, Noesselt T (2013) Tactile stimulation and hemispheric asymmetries modulate auditory perception and neural responses in primary auditory cortex. Neuroimage 79:371–382

    CAS  PubMed  Google Scholar 

  • Innocenti GM, Price DJ (2005) Exuberance in the development of cortical networks. Nat Rev Neurosci 6:955–965

    CAS  PubMed  Google Scholar 

  • Inui K, Kakigi R (2006) Temporal analysis of the flow from V1 to the extrastriate cortex in humans. J Neurophysiol 96:775–784

    PubMed  Google Scholar 

  • Inui K, Wang X, Tamura Y, Kaneoke Y, Kakigi R (2004) Serial processing in the human somatosensory system. Cereb Cortex 14:851–857

    PubMed  Google Scholar 

  • Inui K, Okamoto H, Miki K, Gunji A, Kakigi R (2006) Serial and parallel processing in the human auditory cortex: a magnetoencephalographic study. Cereb Cortex 16:18–30

    PubMed  Google Scholar 

  • Jacobs GH, Deegan JF 2nd (1994) Sensitivity to ultraviolet light in the gerbil (Meriones unguiculatus): characteristics and mechanisms. Vision Res 34:1433–1441

    CAS  PubMed  Google Scholar 

  • Jaekl PM, Soto-Faraco S (2010) Audiovisual contrast enhancement is articulated primarily via the M-pathway. Brain Res 1366:85–92

    CAS  PubMed  Google Scholar 

  • Jones B (1995) Reticular formation: cytoarchitecture, transmitters, and projections. In: Paxinos G (ed) The rat nervous system. Academic Press, Sydney, pp 155–172

    Google Scholar 

  • Jones EG (1998) A new view of specific and nonspecific thalamocortical connections. Adv Neurol 77:49–71 (discussion 72–73)

    CAS  PubMed  Google Scholar 

  • Jones EG (2007) The thalamus. Cambridge University Press, Cambridge

    Google Scholar 

  • Kaas JH, Hall WC, Diamond IT (1972) Visual cortex of the grey squirrel (Sciurus carolinensis): architectonic subdivisions and connections from the visual thalamus. J Comp Neurol 145:273–305

    CAS  PubMed  Google Scholar 

  • Kamishina H, Conte WL, Patel SS, Tai RJ, Corwin JV, Reep RL (2009) Cortical connections of the rat lateral posterior thalamic nucleus. Brain Res 1264:39–56

    CAS  PubMed  Google Scholar 

  • Karlen SJ, Kahn DM, Krubitzer L (2006) Early blindness results in abnormal corticocortical and thalamocortical connections. Neuroscience 142:843–858

    CAS  PubMed  Google Scholar 

  • Kayser C, Petkov CI, Augath M, Logothetis NK (2005) Integration of touch and sound in auditory cortex. Neuron 48:373–384

    CAS  PubMed  Google Scholar 

  • Kayser C, Petkov CI, Logothetis NK (2008) Visual modulation of neurons in auditory cortex. Cereb Cortex 18:1560–1574

    PubMed  Google Scholar 

  • Kayser C, Petkov CI, Logothetis NK (2009) Multisensory interactions in primate auditory cortex: fMRI and electrophysiology. Hear Res 258:80–88

    PubMed  Google Scholar 

  • Khorevin VI (1978) Responses of the neurons of the magnocellular portion of the medial geniculate body to acoustic and somatosensory stimulation. Neirofiziologiia 10:133–141

    CAS  PubMed  Google Scholar 

  • Klinge C, Eippert F, Roder B, Buchel C (2010) Corticocortical connections mediate primary visual cortex responses to auditory stimulation in the blind. J Neurosci 30:12798–12805

    CAS  PubMed  Google Scholar 

  • Kobayasi KI, Suwa Y, Riquimaroux H (2013) Audiovisual integration in the primary auditory cortex of an awake rodent. Neurosci Lett 534:24–29

    CAS  PubMed  Google Scholar 

  • Komura Y, Tamura R, Uwano T, Nishijo H, Ono T (2005) Auditory thalamus integrates visual inputs into behavioral gains. Nat Neurosci 8:1203–1209

    CAS  PubMed  Google Scholar 

  • Koralek KA, Jensen KF, Killackey HP (1988) Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex. Brain Res 463:346–351

    CAS  PubMed  Google Scholar 

  • Kral A, Eggermont JJ (2007) What’s to lose and what’s to learn: development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Res Rev 56:259–269

    PubMed  Google Scholar 

  • Kurt S, Deutscher A, Crook JM, Ohl FW, Budinger E, Moeller CK, Scheich H, Schulze H (2008) Auditory cortical contrast enhancing by global winner-take-all inhibitory interactions. PLoS One 3:e1735

    PubMed Central  PubMed  Google Scholar 

  • Lakatos P, Chen CM, O’Connell MN, Mills A, Schroeder CE (2007) Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron 53:279–292

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laramee ME, Rockland KS, Prince S, Bronchti G, Boire D (2012) Principal component and cluster analysis of layer V pyramidal cells in visual and non-visual cortical areas projecting to the primary visual cortex of the mouse. Cereb Cortex 23:714–728

    PubMed  Google Scholar 

  • Larsen DD, Luu JD, Burns ME, Krubitzer L (2009) What are the effects of severe visual impairment on the cortical organization and connectivity of primary visual cortex? Front Neuroanat 3:30

    PubMed Central  PubMed  Google Scholar 

  • Laurienti PJ, Burdette JH, Wallace MT, Yen YF, Field AS, Stein BE (2002) Deactivation of sensory-specific cortex by cross-modal stimuli. J Cogn Neurosci 14:420–429

    PubMed  Google Scholar 

  • Lehmann C, Herdener M, Esposito F, Hubl D, di Salle F, Scheffler K, Bach DR, Federspiel A, Kretz R, Dierks T, Seifritz E (2006) Differential patterns of multisensory interactions in core and belt areas of human auditory cortex. Neuroimage 31:294–300

    PubMed  Google Scholar 

  • Lewis R, Noppeney U (2010) Audiovisual synchrony improves motion discrimination via enhanced connectivity between early visual and auditory areas. J Neurosci 30:12329–12339

    CAS  PubMed  Google Scholar 

  • Liang M, Mouraux A, Hu L, Iannetti GD (2013) Primary sensory cortices contain distinguishable spatial patterns of activity for each sense. Nat Commun 4:1979

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lomber SG, Meredith MA, Kral A (2010) Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nat Neurosci 13:1421–1427

    CAS  PubMed  Google Scholar 

  • Loskota WJ, Lomax P, Verity MA (1974) A stereotaxic atlas of the Mongolian gerbil (Meriones unguiculatus). Ann Arbor Science, Michigan

    Google Scholar 

  • Lurilli G, Ghezzi D, Olcese U, Lassi G, Nazzaro C, Tonini R, Tucci V, Benfenati F, Medini P (2012) Sound-driven synaptic inhibition in primary visual cortex. Neuron 73:814–828

    Google Scholar 

  • Macaluso E (2006) Multisensory processing in sensory-specific cortical areas. Neuroscientist 12:327–338

    PubMed  Google Scholar 

  • Macaluso E, Driver J (2005) Multisensory spatial interactions: a window onto functional integration in the human brain. Trends Neurosci 28:264–271

    CAS  PubMed  Google Scholar 

  • MacLean JN, Fenstermaker V, Watson BO, Yuste R (2006) A visual thalamocortical slice. Nat Methods 3:129–134

    CAS  PubMed  Google Scholar 

  • Martuzzi R, Murray MM, Michel CM, Thiran JP, Maeder PP, Clarke S, Meuli RA (2007) Multisensory interactions within human primary cortices revealed by BOLD dynamics. Cereb Cortex 17:1672–1679

    PubMed  Google Scholar 

  • Maunsell JH, Gibson JR (1992) Visual response latencies in striate cortex of the macaque monkey. J Neurophysiol 68:1332–1344

    CAS  PubMed  Google Scholar 

  • McCarthy G, Wood CC, Allison T (1991) Cortical somatosensory evoked potentials. I. Recordings in the monkey Macaca fascicularis. J Neurophysiol 66:53–63

    CAS  PubMed  Google Scholar 

  • Mercier MR, Foxe JJ, Fiebelkorn IC, Butler JS, Schwartz TH, Molholm S (2013) Auditory-driven phase reset in visual cortex: human electrocorticography reveals mechanisms of early multisensory integration. Neuroimage 79:19–29

    PubMed Central  PubMed  Google Scholar 

  • Meredith MA, Kryklywy J, McMillan AJ, Malhotra S, Lum-Tai R, Lomber SG (2011) Crossmodal reorganization in the early deaf switches sensory, but not behavioral roles of auditory cortex. Proc Natl Acad Sci USA 108:8856–8861

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer K, Kaplan JT, Essex R, Damasio H, Damasio A (2011) Seeing touch is correlated with content-specific activity in primary somatosensory cortex. Cereb Cortex 21:2113–2121

    PubMed Central  PubMed  Google Scholar 

  • Molholm S, Ritter W, Murray MM, Javitt DC, Schroeder CE, Foxe JJ (2002) Multisensory auditory-visual interactions during early sensory processing in humans: a high-density electrical mapping study. Brain Res Cogn Brain Res 14:115–128

    PubMed  Google Scholar 

  • Morel A, Garraghty PE, Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comp Neurol 335:437–459

    CAS  PubMed  Google Scholar 

  • Morrell F (1972) Visual system’s view of acoustic space. Nature 238:44–46

    CAS  PubMed  Google Scholar 

  • Murata K, Cramer H, Bach-y-Rita P (1965) Neuronal convergence of noxious, acoustic, and visual stimuli in the visual cortex of the cat. J Neurophysiol 28:1223–1239

    CAS  PubMed  Google Scholar 

  • Murray MM, Molholm S, Michel CM, Heslenfeld DJ, Ritter W, Javitt DC, Schroeder CE, Foxe JJ (2005) Grabbing your ear: rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment. Cereb Cortex 15:963–974

    PubMed  Google Scholar 

  • Mylius J, Brosch M, Scheich H, Budinger E (2013) Subcortical auditory structures in the Mongolian gerbil: I. Golgi architecture. J Comp Neurol 521:1289–1321

    PubMed  Google Scholar 

  • Naue N, Rach S, Struber D, Huster RJ, Zaehle T, Korner U, Herrmann CS (2011) Auditory event-related response in visual cortex modulates subsequent visual responses in humans. J Neurosci 31:7729–7736

    CAS  PubMed  Google Scholar 

  • Nauta WJ, Bucher VM (1954) Efferent connections of the striate cortex in the albino rat. J Comp Neurol 100:257–285

    CAS  PubMed  Google Scholar 

  • Noesselt T, Rieger JW, Schoenfeld MA, Kanowski M, Hinrichs H, Heinze HJ, Driver J (2007) Audiovisual temporal correspondence modulates human multisensory superior temporal sulcus plus primary sensory cortices. J Neurosci 27:11431–11441

    PubMed Central  CAS  PubMed  Google Scholar 

  • Noesselt T, Tyll S, Boehler CN, Budinger E, Heinze HJ, Driver J (2010) Sound-induced enhancement of low-intensity vision: multisensory influences on human sensory-specific cortices and thalamic bodies relate to perceptual enhancement of visual detection sensitivity. J Neurosci 30:13609–13623

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nothias F, Peschanski M, Besson JM (1988) Somatotopic reciprocal connections between the somatosensory cortex and the thalamic Po nucleus in the rat. Brain Res 447:169–174

    CAS  PubMed  Google Scholar 

  • Nowak LG, Munk MH, Nelson JI, James AC, Bullier J (1995) Structural basis of cortical synchronization. I. Three types of interhemispheric coupling. J Neurophysiol 74:2379–2400

    CAS  PubMed  Google Scholar 

  • Ohl FW, Scheich H, Freeman WJ (2001) Change in pattern of ongoing cortical activity with auditory category learning. Nature 412:733–736

    CAS  PubMed  Google Scholar 

  • Palomero-Gallagher N, Zilles K (2004) Isocortex. In: Paxinos G (ed) The rat nervous system. Elsevier Academic Press, San Diego, pp 729–757

    Google Scholar 

  • Paperna T, Malach R (1991) Patterns of sensory intermodality relationships in the cerebral cortex of the rat. J Comp Neurol 308:432–456

    CAS  PubMed  Google Scholar 

  • Paxinos G (1995) The rat nervous system. Academic Press, Sydney

    Google Scholar 

  • Paxinos G (2004) The rat nervous system. Elsevier Academic Press, San Diego

    Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, Sydney

    Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San Diego

    Google Scholar 

  • Paxinos G, Carrive P, Wang H, Wang P-Y (1999a) Chemoarchitectonic atlas of the rat brainstem. Academic Press, San Diego

    Google Scholar 

  • Paxinos G, Kus L, Ashwell KWS, Watson C (1999b) Chemoarchitectonic atlas of the rat forebrain. Academic Press, San Diego

    Google Scholar 

  • Pekkola J, Ojanen V, Autti T, Jaaskelainen IP, Mottonen R, Tarkiainen A, Sams M (2005) Primary auditory cortex activation by visual speech: an fMRI study at 3 T. NeuroReport 16:125–128

    PubMed  Google Scholar 

  • Peters A, Feldman ML (1976) The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. I. General description. J Neurocytol 5:63–84

    CAS  PubMed  Google Scholar 

  • Price DJ, Kennedy H, Dehay C, Zhou L, Mercier M, Jossin Y, Goffinet AM, Tissir F, Blakey D, Molnar Z (2006) The development of cortical connections. Eur J Neurosci 23:910–920

    PubMed  Google Scholar 

  • Radtke-Schuller S, Angenstein F, Goldschmidt J, Grosser OS, Schuller G, Budinger E (2011) Reconstructing the in vivo brain: A CT/MRT aided stereotaxic atlas of the Mongolian brain (Meriones unguiculatus) In: Proceedings of the 33rd Göttingen neurobiology conference and ninth Göttingen meeting of the German Neuroscience Society, p 1340

  • Raij T, Ahveninen J, Lin FH, Witzel T, Jaaskelainen IP, Letham B, Israeli E, Sahyoun C, Vasios C, Stufflebeam S, Hamalainen M, Belliveau JW (2010) Onset timing of cross-sensory activations and multisensory interactions in auditory and visual sensory cortices. Eur J Neurosci 31:1772–1782

    PubMed Central  PubMed  Google Scholar 

  • Recanzone GH, Guard DC, Phan ML (2000) Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. J Neurophysiol 83:2315–2331

    CAS  PubMed  Google Scholar 

  • Ro T, Ellmore TM, Beauchamp MS (2013) A neural link between feeling and hearing. Cereb Cortex 23:1724–1730

    PubMed Central  PubMed  Google Scholar 

  • Rockland KS, Ojima H (2003) Multisensory convergence in calcarine visual areas in macaque monkey. Int J Psychophysiol 50:19–26

    PubMed  Google Scholar 

  • Romo R, Merchant H, Zainos A, Hernandez A (1996) Categorization of somaesthetic stimuli: sensorimotor performance and neuronal activity in primary somatic sensory cortex of awake monkeys. NeuroReport 7:1273–1279

    CAS  PubMed  Google Scholar 

  • Rouiller EM (1997) Functional organization of the auditory pathways. In: Ehret G, Romand R (eds) The central auditory system, pp 3–96

  • Rouiller EM, Simm GM, Villa AE, de Ribaupierre Y, de Ribaupierre F (1991) Auditory corticocortical interconnections in the cat: evidence for parallel and hierarchical arrangement of the auditory cortical areas. Exp Brain Res 86:483–505

    CAS  PubMed  Google Scholar 

  • Roy NC, Bessaih T, Contreras D (2011) Comprehensive mapping of whisker-evoked responses reveals broad, sharply tuned thalamocortical input to layer 4 of barrel cortex. J Neurophysiol 105:2421–2437

    PubMed Central  PubMed  Google Scholar 

  • Ryan A (1976) Hearing sensitivity of the mongolian gerbil, Meriones unguiculatis. J Acoust Soc Am 59:1222–1226

    CAS  PubMed  Google Scholar 

  • Scheich H, Heil P, Langner G (1993) Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). II. Tonotopic 2-deoxyglucose. Eur J Neurosci 5:898–914

    CAS  PubMed  Google Scholar 

  • Schmahmann JD (2003) Vascular syndromes of the thalamus. Stroke 34:2264–2278

    PubMed  Google Scholar 

  • Schroeder CE, Foxe J (2005) Multisensory contributions to low-level, ‘unisensory’ processing. Curr Opin Neurobiol 15:454–458

    CAS  PubMed  Google Scholar 

  • Schroeder CE, Lindsley RW, Specht C, Marcovici A, Smiley JF, Javitt DC (2001) Somatosensory input to auditory association cortex in the macaque monkey. J Neurophysiol 85:1322–1327

    CAS  PubMed  Google Scholar 

  • Schroeder CE, Smiley J, Fu KG, McGinnis T, O’Connell MN, Hackett TA (2003) Anatomical mechanisms and functional implications of multisensory convergence in early cortical processing. Int J Psychophysiol 50:5–17

    PubMed  Google Scholar 

  • Sears LL, Logue SF, Steinmetz JE (1996) Involvement of the ventrolateral thalamic nucleus in rabbit classical eyeblink conditioning. Behav Brain Res 74:105–117

    CAS  PubMed  Google Scholar 

  • Seto-Ohshima A, Ito M, Katoh M, Kitajima S, Kishikawa M (2001) Manipulation of the somatosensory cortex modulates stimulus-induced repetitive ear movements in a seizure-sensitive strain of gerbil. Zool Sci 18:1217–1223

    CAS  PubMed  Google Scholar 

  • Shankar S, Ellard C (2000) Visually guided locomotion and computation of time-to-collision in the mongolian gerbil (Meriones unguiculatus): the effects of frontal and visual cortical lesions. Behav Brain Res 108:21–37

    CAS  PubMed  Google Scholar 

  • Sherman SM, Guillery RW (2011) Distinct functions for direct and transthalamic corticocortical connections. J Neurophysiol 106:1068–1077

    PubMed  Google Scholar 

  • Shires KL, Hawthorne JP, Hope AM, Dudchenko PA, Wood ER, Martin SJ (2013) Functional connectivity between the thalamus and postsubiculum: analysis of evoked responses elicited by stimulation of the laterodorsal thalamic nucleus in anesthetized rats. Hippocampus 23:559–569

    PubMed  Google Scholar 

  • Sieben K, Roder B, Hanganu-Opatz IL (2013) Oscillatory entrainment of primary somatosensory cortex encodes visual control of tactile processing. J Neurosci 33:5736–5749

    CAS  PubMed  Google Scholar 

  • Smiley JF, Falchier A (2009) Multisensory connections of monkey auditory cerebral cortex. Hear Res 258:37–46

    PubMed Central  PubMed  Google Scholar 

  • Smith PH, Manning KA, Uhlrich DJ (2010) Evaluation of inputs to rat primary auditory cortex from the suprageniculate nucleus and extrastriate visual cortex. J Comp Neurol 518:3679–3700

    PubMed Central  PubMed  Google Scholar 

  • Spinelli DN, Starr A, Barrett TW (1968) Auditory specificity in unit recordings from cat’s visual cortex. Exp Neurol 22:75–84

    CAS  PubMed  Google Scholar 

  • Spreafico R, Hayes NL, Rustioni A (1981) Thalamic projections to the primary and secondary somatosensory cortices in cat: single and double retrograde tracer studies. J Comp Neurol 203:67–90

    CAS  PubMed  Google Scholar 

  • Stein BE, Stanford TR (2008) Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci 9:255–266

    CAS  PubMed  Google Scholar 

  • Strick PL (1973) Light microscopic analysis of the cortical projection of the thalamic ventrolateral nucleus in the cat. Brain Res 55:1–24

    CAS  PubMed  Google Scholar 

  • Swanson L (2004) Brain maps. III. Structure of the rat brain. Elsevier, Amsterdam

    Google Scholar 

  • Talsma D, Woldorff MG (2005) Selective attention and multisensory integration: multiple phases of effects on the evoked brain activity. J Cogn Neurosci 17:1098–1114

    PubMed  Google Scholar 

  • Teder-Salejarvi WA, McDonald JJ, Di Russo F, Hillyard SA (2002) An analysis of audio-visual crossmodal integration by means of event-related potential (ERP) recordings. Brain Res Cogn Brain Res 14:106–114

    CAS  PubMed  Google Scholar 

  • Thiessen DD, Yahr P (1977a) A stereotaxic brain atlas of the gerbil. In: Thiessen DD, Yahr P (eds) The gerbil in behavioral investigations. Mechanisms of territoriality and olfactory communication. University of Texas Press, Austin, pp 118–157

    Google Scholar 

  • Thiessen DD, Yahr P (1977b) The gerbil in behavioral investigations. Mechanisms of territoriality and olfactory communication. University of Texas Press, Austin

    Google Scholar 

  • Thomas O (1908) The Duke of Bedford’s zoological exploration in Eastern Asia. XI List of mammals from the Mongolian plateau. Proc Zool Soc Lond:104–110

  • Thomas H, Tillein J, Heil P, Scheich H (1993) Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). I. Electrophysiological mapping of frequency representation and distinction of fields. Eur J Neurosci 5:882–897

    CAS  PubMed  Google Scholar 

  • Thorne JD, De Vos M, Viola FC, Debener S (2011) Cross-modal phase reset predicts auditory task performance in humans. J Neurosci 31:3853–3861

    CAS  PubMed  Google Scholar 

  • Tlamsa AP, Brumberg JC (2010) Organization and morphology of thalamocortical neurons of mouse ventral lateral thalamus. Somatosens Motor Res 27:34–43

    Google Scholar 

  • Towns LC, Burton SL, Kimberly CJ, Fetterman MR (1982) Projections of the dorsal lateral geniculate and lateral posterior nuclei to visual cortex in the rabbit. J Comp Neurol 210:87–98

    CAS  PubMed  Google Scholar 

  • Tyll S, Budinger E, Noesselt T (2011) Thalamic influences on multisensory integration. Commun Integr Biol 4:378–381

    PubMed Central  PubMed  Google Scholar 

  • Tyll S, Bonath B, Schoenfeld MA, Heinze HJ, Ohl FW, Noesselt T (2013) Neural basis of multisensory looming signals. Neuroimage 65:13–22

    PubMed  Google Scholar 

  • Vallejo LA, Garrosa M, Al-Majdalawi A, Mayo A, Gayoso MJ (2000) Effects of unilateral deprivation in postnatal development of the olfactory bulb in an altricial rodent, the gerbil (Meriones unguiculatus). Brain Res Dev Brain Res 122:35–46

    CAS  PubMed  Google Scholar 

  • Van Groen T, Wyss JM (1992) Projections from the laterodorsal nucleus of the thalamus to the limbic and visual cortices in the rat. J Comp Neurol 324:427–448

    PubMed  Google Scholar 

  • Van Groen T, Kadish I, Wyss JM (2002) The role of the laterodorsal nucleus of the thalamus in spatial learning and memory in the rat. Behav Brain Res 136:329–337

    PubMed  Google Scholar 

  • Vaudano E, Legg CR, Glickstein M (1991) Afferent and efferent connections of temporal association cortex in the rat: a horseradish peroxidase study. Eur J Neurosci 3:317–330

    PubMed  Google Scholar 

  • Wallace MT, Ramachandran R, Stein BE (2004) A revised view of sensory cortical parcellation. Proc Natl Acad Sci USA 101:2167–2172

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Q, Burkhalter A (2007) Area map of mouse visual cortex. J Comp Neurol 502:339–357

    PubMed  Google Scholar 

  • Wang Y, Celebrini S, Trotter Y, Barone P (2008) Visuo-auditory interactions in the primary visual cortex of the behaving monkey: electrophysiological evidence. BMC Neurosci 9:79

    PubMed Central  PubMed  Google Scholar 

  • Wang Q, Sporns O, Burkhalter A (2012) Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex. J Neurosci 32:4386–4399

    PubMed Central  CAS  PubMed  Google Scholar 

  • Watson C, Paxinos G, Pulles L (2012) The mouse nervous system. Elsevier, Sydney

    Google Scholar 

  • Wepsic JG (1966) Multimodal sensory activation of cells in the magnocellular medial geniculate nucleus. Exp Neurol 15:299–318

    CAS  PubMed  Google Scholar 

  • Werner S, Noppeney U (2011) The contributions of transient and sustained response codes to audiovisual integration. Cereb Cortex 21:920–931

    PubMed  Google Scholar 

  • Werner-Reiss U, Kelly KA, Trause AS, Underhill AM, Groh JM (2003) Eye position affects activity in primary auditory cortex of primates. Curr Biol 13:554–562

    CAS  PubMed  Google Scholar 

  • Winer JA (1992) The functional architecture of the medial geniculate body and the primary auditory cortex. In: Webster DB, Popper AN, Fay RR (eds) The mammalian auditory pathway: neuroanatomy. Springer, New York, pp 222–409

    Google Scholar 

  • Winer JA, Diamond IT, Raczkowski D (1977) Subdivisions of the auditory cortex of the cat: the retrograde transport of horseradish peroxidase to the medial geniculate body and posterior thalamic nuclei. J Comp Neurol 176:387–417

    CAS  PubMed  Google Scholar 

  • Winer JA, Sally SL, Larue DT, Kelly JB (1999) Origins of medial geniculate body projections to physiologically defined zones of rat primary auditory cortex. Hear Res 130:42–61

    CAS  PubMed  Google Scholar 

  • Wise SP, Jones EG (1977) Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex. J Comp Neurol 175:129–157

    CAS  PubMed  Google Scholar 

  • Woldorff MG, Gallen CC, Hampson SA, Hillyard SA, Pantev C, Sobel D, Bloom FE (1993) Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proc Natl Acad Sci USA 90:8722–8726

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zilles K (1985) The cortex of the rat. A stereotaxic atlas. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

We thank Anja Gürke and Janet Stallmann for their excellent histological assistance and Alexander Waite for editorial help. This work was supported by the State Sachsen-Anhalt, Bundesministerium für Bildung und Forschung, and Deutsche Forschungsgesellschaft (grants of Sonderforschungsbereich Transregio 31 to T.N., H.S., E.B.), Germany.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

We declare that all animal studies have been approved by the appropriate ethics committee (see “Materials and methods”) and have, therefore, been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eike Budinger.

Electronic supplementary material

Supplementary material

For those who are red-green color blind, Figures 1, 3 and 5 are provided in magenta-green (Suppl. Figures 1–3).

Below is the link to the electronic supplementary material.

429_2013_694_MOESM1_ESM.tif

Supplementary Figure 1 (Fig. 1 magenta/green). (A-C) Frontal sections showing the cytoarchitecture (blue-fluorescent Nissl-stain) of the primary auditory (A1), somatosensory (S1), and visual cortex (V1). (D-F) Frontal sections showing a representative injection site of tetramethylrhodamine-dextranamine (TMRDA) (magenta) into A1 (D), of fluorescein-dextran amine (FDA) (green) into S1/HL (E), and of FDA into V1 (F). (G) Horizontal section illustrating the anterograde and retrograde labeling in the medial geniculate body (MGV, MGM), brachium of the inferior colliculus (BIC), reticular thalamic (Rt), ventrolateral thalamic (VL), and ventral posterorlateral thalamic nucleus (VPL) following an injection of TMRDA into A1 and of FDA into S1. Note the TMRDA and FDA labeling in the MGM (arrows). (H) Frontal section illustrating the anterograde and retrograde labeling in the dorsal, ventral, and medial divisions of the medial geniculate body (MGD, MGV, MGM), marginal zone of medial geniculate body (MZMG), and suprageniculate thalamic nucleus (SG) following an injection of TMRDA into A1 and of FDA into S1. Note the retrograde TMRDA and FDA labeling in the MZMG (arrows). (I) Frontal section illustrating the anterograde and retrograde labeling in the MGD, SG, posterior limitans thalamic nucleus (PLi), and BIC following an injection of TMRDA into A1 and of FDA into S1. Within the SG, a double-labeled neuron (yellow fluorescent, enlarged in inset) can be seen. (K) Horizontal section illustrating the anterograde and retrograde labeling in the dorsal division of lateral geniculate body (DLG), lateral posterior (LP), posterior thalamic nucleus (Po), and Rt following an injection of TMRDA into V1 and of FDA into S1. Note the retrograde TMRDA and FDA labeling in Po (arrow). Scale bars 1 mm (D-G, K) and 500 μm (A-C, H, I). For other abbreviations see list. (TIFF 19973 kb)

429_2013_694_MOESM2_ESM.tif

Supplementary Figure 2 (Fig. 3 magenta/green). Serial reconstructions of sections through the thalamus showing retrograde labeling after injections of TMRDA into A1 and FDA into V1 (A, D), TMRDA into A1 and FDA into S1 (B, E), and TMRDA into V1 and FDA into S1 (C, F). Note the TMRDA and FDA labeling in the suprageniculate (SG), laterodorsal (LD), posterior thalamic nucleus (Po), and medial division of the medial geniculate body (MGM). Horizontal (A-C) and frontal sections (D-F), respectively. Scale bars 1 mm. For other abbreviations see list. (TIFF 16710 kb)

429_2013_694_MOESM3_ESM.tif

Supplementary Figure 3 (Fig. 5 magenta/green). Frontal sections showing retrogradely labeled somata (insets A, B, D, F and arrows in C, E) in the primary somatosensory (A, B), visual (C, D), and auditory cortex (E, F) following injections of FDA (green) and TMRDA (magenta) into A1 (B, D), S1 (C, F), and V1 (A, E). Scale bars 1 mm (A, B, D, F and insets C, E), 500 μm (C, E), 100 μm (inset A, B, D, F). For abbreviations see list. (TIFF 14166 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henschke, J.U., Noesselt, T., Scheich, H. et al. Possible anatomical pathways for short-latency multisensory integration processes in primary sensory cortices. Brain Struct Funct 220, 955–977 (2015). https://doi.org/10.1007/s00429-013-0694-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0694-4

Keywords

Navigation