Skip to main content

Advertisement

Log in

Aerobic glycolysis in the primate brain: reconsidering the implications for growth and maintenance

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Glucose metabolism produces, by oxidative phosphorylation, more than 15 times the amount of energy generated by aerobic glycolysis. Nonetheless, aerobic glycolysis remains a prevalent metabolic pathway in the brain. Here we review evidence suggesting that this pathway contributes essential molecules to the biomass of the brain. Aerobic metabolism is the dominant metabolic pathway during early postnatal development when lipids and proteins are needed for the processes of axonal elongation, synaptogenesis, and myelination. Furthermore, aerobic metabolism may continue into adulthood to supply biomolecules for activity-related changes at the synapse and turnover of constituent structural components of neurons. Conversely, oxidative phosphorylation appears to be the main metabolic support for synaptic transmission, and, therefore, this pathway seems to be more dominant in brain structures and at time points in the lifespan that are characterized by increased synaptic density. We present the case for differing relationships between aerobic glycolysis and oxidative phosphorylation across primates in association with species-specific variation in neurodevelopmental trajectories. In doing so, we provide an alternative interpretation for the assessment of radiolabeled glucose positron emission tomography studies that regularly attribute increases in glucose uptake to neural activity alone, and propose a new model for the contribution of metabolic pathways for energetic demand and neural tissue growth. We conclude that comparative studies of metabolic appropriation in the brain may contribute to the discussion of human cognitive evolution and to the understanding of human-specific aging and the etiology of neuropsychiatric diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Acetyl-CoA:

Acetyl coenzyme A

AD:

Alzheimer’s disease

AMP:

Adenosine-5′-monophosphate

ATP:

Adenosine-5′-triphosphate

DMN:

Default mode network

DMPFC:

Dorsomedial prefrontal cortex

LDH:

Lactate dehydrogenase

NADH:

Nicotinamide adenine dinucleotide (NAD+), reduced state

NFT:

Neurofibrillary tangle

PCC:

Posterior cingulate cortex

PET:

Positron emission tomography

PiB:

Pittsburgh compound B

PPP:

Pentose phosphate pathway

ROS:

Reactive oxygen species

VMPFC:

Ventromedial prefrontal cortex

References

  • Aiello LC, Wheeler P (1995) The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr Anthropol 36:199–221

    Google Scholar 

  • Akram A, Christoffel D, Rocher AB, Bouras C, Kovari E, Perl DP, Morrison JH, Herrmann FR, Haroutunian V, Giannakopoulos P, Hof PR (2008) Stereologic estimates of total spinophilin-immunoreactive spine number in area 9 and the CA1 field: relationship with the progression of Alzheimer’s disease. Neurobiol Aging 29:1296–1307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Altman DI, Perlman JM, Volpe JJ, Powers WJ (1993) Cerebral oxygen metabolism in newborns. Pediatrics 92:99–104

    CAS  PubMed  Google Scholar 

  • Amato S, Liu X, Zheng B, Cantley L, Rakic P, Man H-Y (2011) AMP-activated protein kinase regulates neuronal polarization by interfering with PI 3-kinase localization. Science 332:247–251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ames A (1992) Energy requirements of CNS cells as related to their function and to their vulnerability to ischemia: a commentary based on studies on retina. Can J Physiol Pharmacol 34:S158–S164

    Google Scholar 

  • Ames A (2000) CNS energy metabolism as related to function. Brain Res Rev 34:42–68

    CAS  PubMed  Google Scholar 

  • Anderson B, Rutledge V (1996) Age and hemisphere effects on dendritic structure. Brain 119:1983–1990

    PubMed  Google Scholar 

  • Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56:924–935

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anglin RES, Mazurek MF, Tarnopolsky MA, Rosebush PI (2012) The mitochondrial genome and psychiatric illness. Am J Med Genet 159B:749–759

    PubMed  Google Scholar 

  • Antonicka H, Leary SC, Guercin G-H, Agar JN, Horvath R, Kennaway NG, Harding CO, Jaksch M, Shoubridge EA (2003) Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Hum Mol Genet 12:2693–2702

    CAS  PubMed  Google Scholar 

  • Atkin TA, MacAskill AF, Brandon NJ, Kittler JT (2011) Disrupted in schizophrenia-1 regulates intracellular trafficking of mitochondria in neurons. Mol Psychiatry 16:122–124

    CAS  PubMed  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    CAS  PubMed  Google Scholar 

  • Barks SK, Parr LA, Rilling JK (2013) The default mode network in chimpanzees (Pan troglodytes) is similar to that of humans. Cereb Cortex. doi:10.1093/cercor/bht253

    PubMed  Google Scholar 

  • Barrickman NL, Bastian ML, Isler K, van Schaik CP (2008) Life history costs and benefits of encephalization: a comparative test using data from long-term studies of primates in the wild. J Hum Evol 54:568–590

    PubMed  Google Scholar 

  • Barton RA, Capellini I (2011) Maternal investment, life histories, and the costs of brain growth in mammals. Proc Natl Acad Sci USA 108:6169–6174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–925

    CAS  PubMed  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    CAS  PubMed  Google Scholar 

  • Bianchi S, Stimpson CD, Duka T, Larsen M, Janssen WGM, Collins Z, Bauernfeind AL, Schapiro SJ, Baze WB, McArthur MJ, Hopkins WD, Wildman DE, Lipovich L, Kuzawa CW, Jacobs B, Hof PR, Sherwood CC (2013) Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans. Proc Natl Acad Sci USA 110:10395–10401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bigl M, Bleyl AD, Zedlick D, Arendt T, Bigl V, Eschrich K (1996) Changes of activity and isozyme pattern of phosphofructokinase in the brains of patients with Alzheimer’s disease. J Neurochem 67:1164–1171

    CAS  PubMed  Google Scholar 

  • Bigl M, Brückner MK, Arendt T, Bigl V, Eschrich K (1999) Activities of key glycolytic enzymes in the brains of patients with Alzheimer’s disease. J Neural Transm 106:499–511

    CAS  PubMed  Google Scholar 

  • Bogin B (1997) Evolutionary hypotheses for human childhood. Yearb Phys Anthropol 40:63–89

    Google Scholar 

  • Bourgeois JP, Goldman-Rakic PS, Rakic P (1994) Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb Cortex 4:78–96

    CAS  PubMed  Google Scholar 

  • Bowley MP, Cabral H, Rosene DL, Peters A (2010) Age changes in myelinated nerve fibers of the cingulate bundle and corpus callosum in the rhesus monkey. J Comp Neurol 518:3046–3064

    PubMed Central  PubMed  Google Scholar 

  • Boyle PJ, Scott JC, Krentz AJ, Nagy RJ, Comstock E, Hoffman C (1994) Diminished brain glucose metabolism is a significant determinant for falling rates of systemic glucose utilization during sleep in normal humans. J Clin Invest 93:529–535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brand KA, Hermfisse U (1997) Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J 11:388–395

    CAS  PubMed  Google Scholar 

  • Brooks GA (2009) Cell-cell and intracellular lactate shuttles. J Physiol 587:5591–5600

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown AM, Wender R, Ransom BR (2001) Metabolic substrates other than glucose support axon function in central white matter. J Neurosci Res 66:839–843

    CAS  PubMed  Google Scholar 

  • Buckner RL (2011) The serendipitous discovery of the brain’s default network. Neuroimage 62:1137–1145

    PubMed  Google Scholar 

  • Buckner RL, Carroll DC (2007) Self-projection and the brain. Trends Cogn Sci 11:49–57

    PubMed  Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    PubMed  Google Scholar 

  • Bufill E, Agustí J, Blesa R (2011) Human neoteny revisited: the case of synaptic plasticity. Am J Hum Biol 23:729–739

    PubMed  Google Scholar 

  • Bussière T, Giannakopoulos P, Bouras C, Perl DP, Morrison JH, Hof PR (2003a) Progressive degeneration of nonphosphorylated neurofilament protein-enriched pyramidal neurons predicts cognitive impairment in Alzheimer’s disease: stereologic analysis of prefrontal cortex area 9. J Comp Neurol 463:281–302

    PubMed  Google Scholar 

  • Bussière T, Gold G, Kövari E, Giannakopoulos P, Bouras C, Perl DP, Morrison JH, Hof PR (2003b) Stereologic analysis of neurofibrillary tangle formation in prefrontal cortex area 9 in aging and Alzheimer’s disease. Neuroscience 117:577–592

    PubMed  Google Scholar 

  • Cáceres M, Lachuer J, Zapala MA, Kudo L, Geschwind DH, Lockhart DJ, Preuss TM, Barlow C (2003) Elevated gene expression levels distinguish human from non-human primate brains. Proc Natl Acad Sci USA 100:13030–13035

    PubMed Central  PubMed  Google Scholar 

  • Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583

    PubMed  Google Scholar 

  • Chandrasekaran K, Giordano T, Brady DR, Stoll J, Martin LJ, Rapoport SI (1994) Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer disease. Mol Brain Res 24:336–340

    CAS  PubMed  Google Scholar 

  • Chugani HT (1998) A critical period of brain development: studies of cerebral glucose utilization with PET. Prev Med 27:184–188

    CAS  PubMed  Google Scholar 

  • Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22:487–497

    CAS  PubMed  Google Scholar 

  • Clarke DD, Sokoloff L (1999) Circulation and energy metabolism of the brain. In: Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry, 6th edn. Lippincott-Raven, Philadelphia, pp 637–670

    Google Scholar 

  • Constantinidis C, Steinmetz MA (2001) Neuronal responses in area 7a to multiple-stimulus displays: I. Neurons encode the location of the salient stimulus. Cereb Cortex 11:581–591

    CAS  PubMed  Google Scholar 

  • Coskun PE, Beal MF, Wallace DC (2004) Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci USA 101:10726–10731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coskun PE, Wyrembak J, Derbereva O, Melkonian G, Doran E, Lott IT, Head E, Cotman CW, Wallace DC (2010) Systemic mitochondrial dysfunction and the etiology of Alzheimer’s disease and Down syndrome dementia. J Alzheimers Dis 20:S293–S310

    PubMed  Google Scholar 

  • Coskun P, Wyrembak J, Schriner SE, Chen H, Marciniack C, LaFerla F, Wallace DC (2012) A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim Biophys Acta 1820:553–564

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquière B, Cauwenberghs S, Eelen G, Phng L-K, Betz I, Tembuyser B, Brepoels K, Welti J, Geudens I, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins RT, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven PP, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, DeBerardinis RJ, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M, Carmeliet P (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154:651–663

    PubMed  Google Scholar 

  • Diano S, Liu Z-W, Jeong JK, Dietrich MO, Ruan H-B, Kim E, Suyama S, Kelly K, Gyengesi E, Arbiser JL, Belsham DD, Sarruf DA, Schwartz MW, Bennett AM, Shanabrough M, Mobbs CV, Yang X, Gao X-B, Horvath TL (2011) Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nat Med 17:1121–1127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diaz F (2005) Mice lacking COX10 in skeletal muscle recapitulate the phenotype of progressive mitochondrial myopathies associated with cytochrome c oxidase deficiency. Hum Mol Genet 14:2737–2748

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dienel GA, Hertz L (2001) Glucose and lactate metabolism during brain activation. J Neurosci Res 66:824–838

    CAS  PubMed  Google Scholar 

  • DiMauro S, Schon EA (2008) Mitochondrial disorders in the nervous system. Annu Rev Neurosci 31:91–123

    CAS  PubMed  Google Scholar 

  • Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 311:79–83

    Google Scholar 

  • Duan H, Wearne SL, Rocher AB, Macedo A, Morrison JH, Hof PR (2003) Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex 13:950–961

    PubMed  Google Scholar 

  • Dumitriu D, Hao J, Hara Y, Kaufmann J, Janssen WGM, Lou W, Rapp PR, Morrison JH (2010) Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci 30:7507–7515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ehlers MD (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 6:231–242

    CAS  PubMed  Google Scholar 

  • Elston GN, Benavides-Piccione R, DeFelipe J (2001) The pyramidal cell in cognition: a comparative study in human and monkey. J Neurosci 21:RC163

    CAS  PubMed  Google Scholar 

  • Erecinska M, Cherian S, Silver IA (2004) Energy metabolism in mammalian brain during development. Prog Neurobiol 73:397–445

    CAS  PubMed  Google Scholar 

  • Eykelenboom JE, Briggs GJ, Bradshaw NJ, Soares DC, Ogawa F, Christie S, Malavasi ELV, Makedonopoulou P, Mackie S, Malloy MP, Wear MA, Blackburn EA, Bramham J, McIntosh AM, Blackwood DH, Muir WJ, Porteous DJ, Millar JK (2012) A t(1;11) translocation linked to schizophrenia and affective disorders gives rise to aberrant chimeric DISC1 transcripts that encode structurally altered, deleterious mitochondrial proteins. Hum Mol Genet 21:3374–3386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foley RA, Lee PC (1991) Ecology and energetics of encephalization in hominid evolution. Phil Trans R Soc B 334:223–232

    CAS  PubMed  Google Scholar 

  • Fox P, Raichle M, Mintun M, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464

    CAS  PubMed  Google Scholar 

  • Fraser HB, Khaitovich P, Plotkin JB, Pääbo S, Eisen MB (2005) Aging and gene expression in the primate brain. PLoS Biol 3:e274

    PubMed Central  PubMed  Google Scholar 

  • Fu X, Giavalisco P, Liu X, Catchpole G, Fu N, Ning Z-B, Guo S, Yan Z, Somel M, Pääbo S, Zeng R, Willmitzer L, Khaitovich P (2011) Rapid metabolic evolution in human prefrontal cortex. Proc Natl Acad Sci USA 108:6181–6186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuyama R, Hatanpää K, Rapoport SI, Chandrasekaran K (1996) Gene expression of ND4, a subunit of complex I of oxidative phosphorylation in mitochondria, is decreased in temporal cortex of brains of Alzheimer’s disease patients. Brain Res 713:290–293

    CAS  PubMed  Google Scholar 

  • Fünfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Möbius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521

    PubMed Central  PubMed  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    CAS  PubMed  Google Scholar 

  • Gearing M, Rebeck GW, Hyman BT, Tigges J, Mirra SS (1994) Neuropathology and apolipoprotein E profile of aged chimpanzees: implications for Alzheimer disease. Proc Natl Acad Sci USA 91:9382–9386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gearing M, Tigges J, Mori H, Mirra SS (1996) Aβ40 is a major form of β-amyloid in nonhuman primates. Neurobiol Aging 17:903–908

    CAS  PubMed  Google Scholar 

  • Gearing M, Tigges J, Mori H, Mirra SS (1997) β-amyloid (Aβ) deposition in the brains of aged orangutans. Neurobiol Aging 18:139–146

    CAS  PubMed  Google Scholar 

  • Geula C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA (1998) Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nat Med 4:827–831

    CAS  PubMed  Google Scholar 

  • Giannakopoulos P, Herrmann FR, Bussière T, Bouras C, Kövari E, Perl DP, Morrison JH, Hof PR (2003) Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60:1495–1500

    CAS  PubMed  Google Scholar 

  • Gibson KR (1970) Sequence of myelinization in the brain of Macaca mulatta. Dissertation, University of California, Berkeley

  • Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863

    CAS  PubMed  Google Scholar 

  • Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 101:8174–8179

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldberg JL (2003) How does an axon grow? Genes Dev 17:941–958

    CAS  PubMed  Google Scholar 

  • Goldberg A, Wildman DE, Schmidt TR, Huttemann M, Goodman M, Weiss ML, Grossman LI (2003) Adaptive evolution of cytochrome c oxidase subunit VIII in anthropoid primates. Proc Natl Acad Sci USA 100:5873–5878

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldman-Rakic PS (1987) Development of cortical circuitry and cognitive function. Child Dev 58:601–622

    CAS  PubMed  Google Scholar 

  • Goodman M, Syner FN, Stimson CW, Rankin JJ (1969) Phylogenetic changes in the proportions of two kinds of lactate dehydrogenase in primate brain regions. Brain Res 14:447–459

    CAS  PubMed  Google Scholar 

  • Gordon GRJ, Choi HB, Rungta RL, Ellis-Davies GCR, MacVicar BA (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456:745–749

    CAS  PubMed  Google Scholar 

  • Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8:481–488

    CAS  PubMed  Google Scholar 

  • Gregson NA, Williams PL (1969) A comparative study of brain and liver mitochondria from new-born and adult rats. J Neurochem 16:617–626

    CAS  PubMed  Google Scholar 

  • Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101:4637–4642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grèzes J, Fonlupt P, Bertenthal B, Delon-Martin C, Segebarth C, Decety J (2001) Does perception of biological motion rely on specific brain regions? Neuroimage 13:775–785

    PubMed  Google Scholar 

  • Grossman ED, Blake R (2001) Brain activity evoked by inverted and imagined biological motion. Vision Res 41:1475–1482

    CAS  PubMed  Google Scholar 

  • Grossman LI, Schmidt TR, Wildman DE, Goodman M (2001) Molecular evolution of aerobic energy metabolism in primates. Mol Phylogenet Evol 18:26–36

    CAS  PubMed  Google Scholar 

  • Grossman LI, Wildman DE, Schmidt TR, Goodman M (2004) Accelerated evolution of the electron transport chain in anthropoid primates. Trends Genet 20:578–585

    CAS  PubMed  Google Scholar 

  • Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694

    CAS  PubMed  Google Scholar 

  • Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci USA 98:4259–4264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hall CN, Klein-Flügge MC, Howarth C, Attwell D (2012) Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J Neurosci 32:8940–8951

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haroutunian V, Davies P, Vianna C, Buxbaum JD, Purohit DP (2007) Tau protein abnormalities associated with the progression of Alzheimer disease type dementia. Neurobiol Aging 28:1–7

    CAS  PubMed  Google Scholar 

  • Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75:762–777

    CAS  PubMed  Google Scholar 

  • Hayden BY, Smith DV, Platt ML (2009) Electrophysiological correlates of default-mode processing in macaque posterior cingulate cortex. Proc Natl Acad Sci USA 106:5948–5953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hensch TK (2004) Critical period regulation. Annu Rev Neurosci 27:549–579

    CAS  PubMed  Google Scholar 

  • Hertz L (2004) The astrocyte-neuron lactate shuttle: a challenge of a challenge. J Cereb Blood Flow Metab 24:1241–1248

    PubMed  Google Scholar 

  • Hevner RF, Wong-Riley MT (1991) Neuronal expression of nuclear and mitochondrial genes for cytochrome oxidase (CO) subunits analyzed by in situ hybridization: comparison with CO activity and protein. J Neurosci 11:1942–1958

    CAS  PubMed  Google Scholar 

  • Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D (2010) Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci USA 107:13135–13140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hof PR, Morrison JH (2004) The aging brain: morphomolecular senescence of cortical circuits. Trends Neurosci 27:607–613

    CAS  PubMed  Google Scholar 

  • Hof PR, Cox K, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: I. Superior frontal and inferior temporal cortex. J Comp Neurol 301:44–54

    CAS  PubMed  Google Scholar 

  • Hof PR, Gilissen EP, Sherwood CC, Duan H, Lee PWH, Delman BN, Naidich TP, Gannon PJ, Perl DP, Erwin JM (2002) Comparative neuropathology of brain aging in primates. In: Erwin JM, Hof PR (eds) Aging in nonhuman primates. Interdiscipl Top Gerontol, vol 31. Karger, Basel, pp 130–154

  • Hof PR, Bussière T, Gold G, Kövari E, Giannakopoulos P, Bouras C, Perl DP, Morrison JH (2003) Stereologic evidence for persistence of viable neurons in layer II of the entorhinal cortex and the CA1 field in Alzheimer disease. J Neuropathol Exp Neurol 62:55–67

    PubMed  Google Scholar 

  • Hofman MA (1983) Energy metabolism, brain size and longevity in mammals. Quarterly Rev Biol 58:495–512

    CAS  Google Scholar 

  • Horman S, Browne GJ, Krause U, Patel JV, Vertommen D, Bertrand L, Lavoinne A, Hue L, Proud CG, Rider MH (2002) Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 12:1419–1423

    CAS  PubMed  Google Scholar 

  • Hovda DA, Chugani HT, Villablanca JR, Badie B, Sutton RL (1992) Maturation of cerebral oxidative metabolism in the cat: a cytochrome oxidase histochemistry study. J Cereb Blood Flow Metab 12:1039–1048

    CAS  PubMed  Google Scholar 

  • Hovda DA, Villablanca JR, Chugani HT, Barrio JR (2006) Metabolic maturation of the brain: a study of local cerebral protein synthesis in the developing cat. Brain Res 1113:54–63

    CAS  PubMed  Google Scholar 

  • Hüttemann M, Helling S, Sanderson TH, Sinkler C, Samavati L, Mahapatra G, Varughese A, Lu G, Liu J, Ramzan R, Vogt S, Grossman LI, Doan JW, Marcus K, Lee I (2011) Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim Biophys Acta 1817:598–609

    PubMed Central  PubMed  Google Scholar 

  • Huttenlocher PR (1990) Morphometric study of human cerebral cortex development. Neuropsychologia 28:517–527

    CAS  PubMed  Google Scholar 

  • Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178

    CAS  PubMed  Google Scholar 

  • Jacobs B, Chugani HT, Allada V, Chen S, Phelps ME, Pollack DB, Raleigh MJ (1995) Developmental changes in brain metabolism in sedated rhesus macaques and vervet monkeys revealed by positron emission tomography. Cereb Cortex 5:222–233

    CAS  PubMed  Google Scholar 

  • Jacobs B, Driscoll L, Schall M (1997) Life-span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. J Comp Neurol 386:661–680

    CAS  PubMed  Google Scholar 

  • Jacobs B, Schall M, Prather M, Kapler E, Driscoll L, Baca S, Jacobs J, Ford K, Wainwright M, Treml M (2001) Regional dendritic and spine variation in human cerebral cortex: a quantitative Golgi study. Cereb Cortex 11:558–571

    CAS  PubMed  Google Scholar 

  • Jareb M, Banker G (1997) Inhibition of axonal growth by brefeldin A in hippocampal neurons in culture. J Neurosci 17:8955–8963

    CAS  PubMed  Google Scholar 

  • Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RS, Passingham RE (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14:3775–3790

    CAS  PubMed  Google Scholar 

  • Kabaso D, Coskren PJ, Henry BI, Hof PR, Wearne SL (2009) The electrotonic structure of pyramidal neurons contributing to prefrontal cortical circuits in macaque monkeys is significantly altered in aging. Cereb Cortex 19:2248–2268

    PubMed Central  PubMed  Google Scholar 

  • Karbowski J (2011) Scaling of brain metabolism and blood flow in relation to capillary and neural scaling. PLoS One 6:e26709

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103

    CAS  PubMed  Google Scholar 

  • Kaufmann P, Sano MC, Jhung S, Engelstadt K, De Vivo DC (2002) Psychiatric symptoms are common features of clinical syndromes associated with mitochondrial DNA point mutations. Neurology 58:A315 (abstract)

    Google Scholar 

  • Kaufmann P, Shungu DC, Sano MC, Jhung S, Engelstad K, Mitsis E, Mao X, Shanske S, Hirano M, DiMauro S, De Vivo DC (2004) Cerebral lactic acidosis correlates with neurological impairment in MELAS. Neurology 62:1297–1302

    CAS  PubMed  Google Scholar 

  • Kennedy C, Sakurada O, Shinohara M, Jehle J, Sokoloff L (1978) Local cerebral glucose utilization in the normal conscious macaque monkey. Ann Neurol 4:293–301

    CAS  PubMed  Google Scholar 

  • Kimura N, Nakamura S, Goto N, Narushima E, Hara I, Shichiri S, Saitou K, Nose M, Hayashi T, Kawamura S, Yoshikawa Y (2001) Senile plaques in an aged western lowland gorilla. Exp Anim 50:77–81

    CAS  PubMed  Google Scholar 

  • Kimura N, Tanemura K, Nakamura S, Takashima A, Ono F, Sakakibara I, Ishii Y, Kyuwa S, Yoshikawa Y (2003) Age-related changes of Alzheimer’s disease-associated proteins in cynomolgus monkey brains. Biochem Biophys Res Commun 310:303–311

    Google Scholar 

  • Kirkwood TB, Austad SN (2000) Why do we age? Nature 408:233–238

    CAS  PubMed  Google Scholar 

  • Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353

    CAS  Google Scholar 

  • Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M, Savitcheva I, Huang G, Estrada S, Ausén B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Långström B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 55:306–319

    CAS  PubMed  Google Scholar 

  • Knott GW, Holtmaat A, Wilbrecht L, Welker E, Svoboda K (2006) Spine growth precedes synapse formation in the adult neocortex in vivo. Nat Neurosci 9:1117–1124

    CAS  PubMed  Google Scholar 

  • Kojima T, Onoe H, Hikosaka K, Tsutsui K-I, Tsukada H, Watanabe M (2009) Default mode of brain activity demonstrated by positron emission tomography imaging in awake monkeys: higher rest-related than working memory-related activity in medial cortical areas. J Neurosci 29:14463–14471

    CAS  PubMed  Google Scholar 

  • Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci USA 96:5768–5773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kornack DR, Rakic P (2001) The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci USA 98:4752–4757

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuzawa CW (1998) Adipose tissue in human infancy and childhood: an evolutionary perspective. Am J Phys Anthropol 41:177–209

    Google Scholar 

  • Kuzawa CW (2007) Developmental origins of life history: growth, productivity, and reproduction. Am J Hum Biol 19:654–661

    PubMed  Google Scholar 

  • Lakatos A, Derbeneva O, Younes D, Keator D, Bakken T, Lvova M, Brandon M, Guffanti G, Reglodi D, Saykin A, Weiner M, Macciardi F, Schork N, Wallace DC, Potkin SG, Alzheimer’s Disease Neuroimaging Initiative (2010) Association between mitochondrial DNA variations and Alzheimer’s disease in the ADNI cohort. Neurobiol Aging 31:1355–1363

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee AG (2001) Myelin: delivery by raft. Curr Biol 11:R60–R62

    CAS  PubMed  Google Scholar 

  • Lemere CA, Beierschmitt A, Iglesias M, Spooner ET, Bloom JK, Leverone JF, Zheng JB, Seabrook TJ, Louard D, Li D, Selkoe DJ, Palmour RM, Ervin FR (2004) Alzheimer’s disease Aβ vaccine reduces central nervous system Aβ levels in a non-human primate, the Caribbean vervet. Am J Pathol 165:283–297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lemere CA, Oh J, Stanish HA, Peng Y, Pepivani I, Fagan AM, Yamaguchi H, Westmoreland SV, Mansfield KG (2008) Cerebral amyloid-beta protein accumulation with aging in cotton-top tamarins: a model of early Alzheimer’s disease? Rejuven Res 11:321–332

    CAS  Google Scholar 

  • Leonard WR, Robertson ML (1994) Evolutionary perspectives on human nutrition: the influence of brain and body size on diet and metabolism. Am J Hum Biol 6:77–88

    Google Scholar 

  • Leveille PJ, McGinnis JF, Maxwell DS, de Vellis J (1980) Immunocytochemical localization of glycerol-3-phosphate dehydrogenase in rat oligodendrocytes. Brain Res 196:287–305

    CAS  PubMed  Google Scholar 

  • Li Z, Okamoto K-I, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887

    CAS  PubMed  Google Scholar 

  • Locasale JW, Cantley LC (2011) Metabolic flux and the regulation of mammalian cell growth. Cell Metab 14:443–451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu H, Zou Q, Gu H, Raichle ME, Stein EA, Yang Y (2012) Rat brains also have a default mode network. Proc Natl Acad Sci USA 109:3979–3984

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lund Madsen P, Hasselbalch SG, Hagemann LP, Skovgaard Olsen K, Bülow J, Holm S, Wildschiødtz G, Paulson OB, Lassen NA (1995) Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: evidence obtained with the Kety–Schmidt technique. J Cereb Blood Flow Metab 15:485–491

    Google Scholar 

  • Maeda K, Nwulia E, Chang J, Balkissoon R, Ishizuka K, Chen H, Zandi P, McInnis MG, Sawa A (2006) Differential expression of disrupted-in-schizophrenia (DISC1) in bipolar disorder. Biol Psychiatry 60:929–935

    PubMed  Google Scholar 

  • Magistretti PJ (2009) Role of glutamate in neuron-glia metabolic coupling. Am J Clin Nutr 90:875S–880S

    CAS  PubMed  Google Scholar 

  • Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283:496–497

    CAS  PubMed  Google Scholar 

  • Markus EJ, Petit TL (1987) Neocortical synaptogenesis, aging, and behavior: lifespan development in the motor-sensory system of the rat. Exp Neurol 96:262–278

    CAS  PubMed  Google Scholar 

  • Mattson MP, Duan W, Maswood N (2002) How does the brain control lifespan? Ageing Res Rev 1:155–165

    CAS  PubMed  Google Scholar 

  • Miller DJ, Duka T, Stimpson CD, Schapiro SJ, Baze WB, McArthur MJ, Fobbs AJ, Sousa AMM, Sestan N, Wildman DE, Lipovich L, Kuzawa CW, Hof PR, Sherwood CC (2012) Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci USA 109:16480–16485

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mink JW, Blumenschine RJ, Adams DB (1981) Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am J Physiol 241:203–212

    Google Scholar 

  • Mintun MA, Larossa GN, Sheline YI, Dence CS, Lee SY, Mach RH, Klunk WE, Mathis CA, DeKosky ST, Morris JC (2006) [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67:446–452

    CAS  PubMed  Google Scholar 

  • Mudher A, Lovestone S (2002) Alzheimer’s disease—do tauists and baptists finally shake hands? Trends Neurosci 25:22–26

    CAS  PubMed  Google Scholar 

  • Mufson EJ, Benzing WC, Cole GM, Wang H, Emerich DF, Sladek JR, Morrison JH, Kordower JH (1994) Apolipoprotein E-immunoreactivity in aged rhesus monkey cortex: colocalization with amyloid plaques. Neurobiol Aging 15:621–627

    CAS  PubMed  Google Scholar 

  • Myers MG, Olson DP (2012) Central nervous system control of metabolism. Nature 491:357–363

    CAS  PubMed  Google Scholar 

  • Navarrete A, van Schaik CP, Isler K (2011) Energetics and the evolution of human brain size. Nature 480:91–93

    CAS  PubMed  Google Scholar 

  • Nehlig A, Pereira de Vasconcelos A (1993) Glucose and ketone body utilization by the brain of neonatal rats. Prog Neurobiol 40:163–221

    CAS  PubMed  Google Scholar 

  • Nehlig A, Pereira de Vasconcelos A, Boyet S (1988) Quantitative autoradiographic measurement of local cerebral glucose utilization in freely moving rats during postnatal development. J Neurosci 8:2321–2333

    CAS  PubMed  Google Scholar 

  • Nelson DL, Cox MM (2008) Lehninger principles of biochemistry, 5th edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Newington JT, Pitts A, Chien A, Arseneault R, Schubert D, Cumming RC (2011) Amyloid beta resistance in nerve cell lines is mediated by the Warburg effect. PLoS One 6:e19191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Newman LA, Korol DL, Gold PE (2011) Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS One 6:e28427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen TH, Bindslev TT, Pedersen SM, Toft P, Olsen NV, Nordström CH (2013) Cerebral energy metabolism during induced mitochondrial dysfunction. Acta Anaesth Scand 57:229–235

    CAS  PubMed  Google Scholar 

  • Paus T, Zijdenbos A, Worsley K, Collins DL, Blumenthal J, Giedd JN, Rapoport JL, Evans AC (1999) Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283:1908–1911

    CAS  PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (2003) Food for thought: challenging the dogmas. J Cereb Blood Flow Metab 23:1282–1286

    PubMed  Google Scholar 

  • Perez de Heredia F, Wood IS, Trayhurn P (2010) Hypoxia stimulates lactate release and modulates monocarboxylate transporter (MCT1, MCT2, and MCT4) expression in human adipocytes. Eur J Physiol 459:509–518

    CAS  Google Scholar 

  • Perez SE, Raghanti MA, Hof PR, Kramer L, Ikonomovic MD, Lacor PN, Erwin JM, Sherwood CC, Mufson EJ (2013) Alzheimer’s disease pathology in the neocortex and hippocampus of the western lowland gorilla (Gorilla gorilla gorilla). J Comp Neurol

  • Petanjek Z, Judaš M, Šimic G, Rašin MR, Uylings HBM, Rakic P, Kostović I (2011) Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci USA 108:13281–13286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peters A, Sethares C, Luebke JI (2008) Synapses are lost during aging in the primate prefrontal cortex. Neuroscience 152:970–981

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pierron D, Wildman DE, Hüttemann M, Markondapatnaikuni GC, Aras S, Grossman LI (2011) Cytochrome c oxidase: evolution of control via nuclear subunit addition. Biochim Biophys Acta 1817:590–597

    PubMed Central  PubMed  Google Scholar 

  • Poduri A, Gearing M, Rebeck GW, Mirra SS, Tigges J, Hyman BT (1994) Apolipoprotein E4 and beta amyloid in senile plaques and cerebral blood vessels of aged rhesus monkeys. Am J Pathol 144:1183–1187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Powers WJ, Rosenbaum JL, Dence CS, Markham J, Videen TO (1998) Cerebral glucose transport and metabolism in preterm human infants. J Cereb Blood Flow Metab 18:632–638

    CAS  PubMed  Google Scholar 

  • Preuss TM (2011) The human brain: rewired and running hot. Ann N Y Acad Sci 1225:E182–E191

    PubMed Central  PubMed  Google Scholar 

  • Preuss TM, Cáceres M, Oldham MC, Geschwind DH (2004) Human brain evolution: insights from microarrays. Nat Rev Genet 5:850–860

    CAS  PubMed  Google Scholar 

  • Purves WK, Sadava D, Orians GH (2001) Life: the science of biology, 6th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Pysh JJ (1970) Mitochondrial changes in rat inferior colliculus during postnatal development: an electron microscopic study. Brain Res 18:325–342

    CAS  PubMed  Google Scholar 

  • Raichle ME (2006) The brain’s dark energy. Science 314:1249–1250

    CAS  PubMed  Google Scholar 

  • Raichle ME (2010) Two views of brain function. Trends Cogn Sci 14:180–190

    PubMed  Google Scholar 

  • Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37:1083–1090

    PubMed  Google Scholar 

  • Raichle ME, Posner JB, Plum F (1970) Cerebral blood flow during and after hyperventilation. Arch Neurol 23:394–403

    CAS  PubMed  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rakic P (2002) Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat Rev Neurosci 3:65–71

    CAS  PubMed  Google Scholar 

  • Rakic P, Bourgeois JP, Eckenhoff MF, Zecevic N, Goldman-Rakic PS (1986) Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232:232–235

    CAS  PubMed  Google Scholar 

  • Ramadori G, Coppari R (2011) Does hypothalamic SIRT1 regulate aging? Aging 3:325–328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rapoport SI, Horwitz B, Haxby JV, Grady CL (1986) Alzheimer’s disease: metabolic uncoupling of associative brain regions. Can J Neurol Sci 13:540–545

    CAS  PubMed  Google Scholar 

  • Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, Thibodeau SN, Osborne D (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the ε4 allele for apolipoprotein E. N Engl J Med 334:752–758

    CAS  PubMed  Google Scholar 

  • Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, Saunders AM, Hardy J (2005) Correlations between apolipoprotein E ε4 gene dose and brain-imaging measurements of regional hypometabolism. Proc Natl Acad Sci USA 102:8299–8302

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rilling JK, Barks SK, Parr LA, Preuss TM, Faber TL, Pagnoni G, Bremner JD, Votaw JR (2007) A comparison of resting-state brain activity in humans and chimpanzees. Proc Natl Acad Sci USA 104:17146–17151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rinholm JE, Hamilton NB, Kessaris N, Richardson WD, Bergersen LH, Attwell D (2011) Regulation of oligodendrocyte development and myelination by glucose and lactate. J Neurosci 31:538–548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robson SL, Wood B (2008) Hominin life history: reconstruction and evolution. J Anat 212:394–425

    PubMed Central  PubMed  Google Scholar 

  • Rosen RF, Farberg AS, Gearing M, Dooyema J, Long PM, Anderson DC, Davis-Turak J, Coppola G, Geschwind DH, Paré J-F, Duong TQ, Hopkins WD, Preuss TM, Walker LC (2008) Tauopathy with paired helical filaments in an aged chimpanzee. J Comp Neurol 509:259–270

    PubMed Central  PubMed  Google Scholar 

  • Salthouse TA (2009) When does age-related cognitive decline begin? Neurobiol Aging 30:507–514

    PubMed Central  PubMed  Google Scholar 

  • Sánchez-Abarca LI, Tabernero A, Medina JM (2001) Oligodendrocytes use lactate as a source of energy and as a precursor of lipids. Glia 36:321–329

    PubMed  Google Scholar 

  • Schmidt TR, Wildman DE, Uddin M, Opazo JC, Goodman M, Grossman LI (2005) Rapid electrostatic evolution at the binding site for cytochrome c on cytochrome c oxidase in anthropoid primates. Proc Natl Acad Sci USA 102:6379–6384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schnaider Beeri M, Haroutunian V, Schmeidler J, Sano M, Fam P, Kavanaugh A, Barr AM, Honer WG, Katsel P (2012) Synaptic protein deficits are associated with dementia irrespective of extreme old age. Neurobiol Aging 33:1125.e1–1125.e8

    CAS  Google Scholar 

  • Selkoe DJ (2000) The origins of Alzheimer disease: a is for amyloid. JAMA 283:1615–1617

    CAS  PubMed  Google Scholar 

  • Semendeferi K, Teffer K, Buxhoeveden DP, Park MS, Bludau S, Amunts K, Travis K, Buckwalter J (2011) Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb Cortex 21:1485–1497

    PubMed  Google Scholar 

  • Settergren G, Lindblad BS, Persson B (1976) Cerebral blood flow and exchange of oxygen, glucose, ketone bodies, lactate, pyruvate and amino acids in infants. Acta Paediatr Scand 65:343–353

    CAS  PubMed  Google Scholar 

  • Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, Greenstein D, Clasen L, Evans A, Rapoport JL, Giedd JN, Wise SP (2008) Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 28:3586–3594

    CAS  PubMed  Google Scholar 

  • Sheng M, Hoogenraad CC (2007) The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 76:823–847

    CAS  PubMed  Google Scholar 

  • Sherwood CC, Gordon AD, Allen JS, Phillips KA, Erwin JM, Hof PR, Hopkins WD (2011) Aging of the cerebral cortex differs between humans and chimpanzees. Proc Natl Acad Sci USA 108:13029–13034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silva DFF, Esteves AR, Oliveira CR, Cardoso SM (2011) Mitochondria: the common upstream driver of amyloid-β and tau pathology in Alzheimer’s disease. Curr Alzheimer Res 8:563–572

    CAS  PubMed  Google Scholar 

  • Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S, Bookheimer SY, Lavretsky H, Miller K, Siddarth P, Rasgon NL, Mazziotta JC, Saxena S, Wu HM, Mega MS, Cummings JL, Saunders AM, Pericak-Vance MA, Roses AD, Barrio JR, Phelps ME (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci USA 97:6037–6042

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith ME (1973) A regional survey of myelin development: some compositional and metabolic aspects. J Lipid Res 14:541–551

    CAS  PubMed  Google Scholar 

  • Soane L, Kahraman S, Kristian T, Fiskum G (2007) Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders. J Neurosci Res 85:3407–3415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sokoloff L, Mangold R, Wechsler RL, Kennedy C, Kety SS (1955) The effect of mental arithmetic on cerebral circulation and metabolism. J Clin Invest 34:1101–1108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Somel M, Franz H, Yan Z, Lorenc A, Guo S, Giger T, Kelso J, Nickel B, Dannemann M, Bahn S, Webster MJ, Weickert CS, Lachmann M, Pääbo S, Khaitovich P (2009) Transcriptional neoteny in the human brain. Proc Natl Acad Sci USA 106:5743–5748

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315

    CAS  PubMed  Google Scholar 

  • Spocter MA, Hopkins WD, Barks SK, Bianchi S, Hehmeyer AE, Anderson SM, Stimpson CD, Fobbs AJ, Hof PR, Sherwood CC (2012) Neuropil distribution in the cerebral cortex differs between humans and chimpanzees. J Comp Neurol 520:2917–2929

    PubMed Central  PubMed  Google Scholar 

  • Spreng RN, Mar RA, Kim ASN (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21:489–510

    PubMed  Google Scholar 

  • Star EN, Kwiatkowski DJ, Murthy VN (2002) Rapid turnover of actin in dendritic spines and its regulation by activity. Nat Neurosci 5:239–246

    CAS  PubMed  Google Scholar 

  • Sterner KN, McGowen MR, Chugani HT, Tarca AL, Sherwood CC, Hof PR, Kuzawa CW, Boddy AM, Raaum RL, Weckle A, Lipovich L, Grossman LI, Uddin M, Goodman M, Wildman DE (2013) Characterization of human cortical gene expression in relation to glucose utilization. Am J Hum Biol 25:418–430

    PubMed  Google Scholar 

  • Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823

    CAS  PubMed Central  PubMed  Google Scholar 

  • Syner FN, Goodman M (1966) Differences in the lactic dehydrogenases of primate brains. Nature 209:426–428

    CAS  PubMed  Google Scholar 

  • Teffer K, Semendeferi K (2012) Human prefrontal cortex: evolution, development, and pathology. In: Hofman MA, Falk D (eds) Evolution of the primate brain: from neuron to behavior. Progress in brain research, vol 195. Elsevier, New York, pp 191–218

    Google Scholar 

  • Tekkök SB, Brown AM, Westenbroek R, Pellerin L, Ransom BR (2005) Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J Neurosci Res 81:644–652

    PubMed  Google Scholar 

  • Tower DB (1954) Structural and functional organization of mammalian cerebral cortex: the correlation of neurone density with brain size. J Comp Neurol 101:19–52

    CAS  PubMed  Google Scholar 

  • Travis K, Ford K, Jacobs B (2005) Regional dendritic variation in neonatal human cortex: a quantitative Golgi study. Dev Neurosci 27:277–287

    CAS  PubMed  Google Scholar 

  • Trushina E, Nemutlu E, Zhang S, Christensen T, Camp J, Mesa J, Siddiqui A, Tamura Y, Sesaki H, Wengenack TM, Dzeja PP, Poduslo JF (2012) Defects in mitochondrial dynamics and metabolomic signatures of evolving energetic stress in mouse models of familial Alzheimer’s disease. PLoS One 7:e32737

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uddin M, Wildman DE, Liu G, Xu W, Johnson RM, Hof PR, Kapatos G, Grossman LI, Goodman M (2004) Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles. Proc Natl Acad Sci USA 101:2957–2962

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uddin M, Opazo JC, Wildman DE, Sherwood CC, Hof PR, Goodman M, Grossman LI (2008) Molecular evolution of the cytochrome c oxidase subunit 5A gene in primates. BMC Evol Biol 8:8

    PubMed Central  PubMed  Google Scholar 

  • Ullah MS, Davies AJ, Halestrap AP (2006) The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem 281:9030–9037

    CAS  PubMed  Google Scholar 

  • Uylings HBM, de Brabander JM (2002) Neuronal changes in normal human aging and Alzheimer’s disease. Brain Cogn 49:268–276

    PubMed  Google Scholar 

  • Vaishnavi SN, Vlassenko AG, Rundle MM, Snyder AZ, Mintun MA, Raichle ME (2010) Regional aerobic glycolysis in the human brain. Proc Natl Acad Sci USA 107:17757–17762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valla J, Berndt JD, Gonzalez-Lima F (2001) Energy hypometabolism in posterior cingulate cortex of Alzheimer’s patients: superficial laminar cytochrome oxidase associated with disease duration. J Neurosci 21:4923–4930

    CAS  PubMed  Google Scholar 

  • Valla J, Yaari R, Wolf AB, Kusne Y, Beach TG, Roher AE, Corneveaux JJ, Huentelman MJ, Caselli RJ, Reiman EM (2010) Reduced posterior cingulate mitochondrial activity in expired young adult carriers of the APOE ε4 allele, the major late-onset Alzheimer’s susceptibility gene. J Alzheimers Dis 22:307–313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329:1492–1499

    CAS  PubMed  Google Scholar 

  • Vaughn AE, Deshmukh M (2008) Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nature 10:1477–1483

    CAS  Google Scholar 

  • Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, Buckner RL (2006) Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol 96:3517–3531

    PubMed  Google Scholar 

  • Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86

    CAS  PubMed  Google Scholar 

  • Vlassenko AG, Rundle MM, Raichle ME, Mintun MA (2006) Regulation of blood flow in activated human brain by cytosolic NADH/NAD+ ratio. Proc Natl Acad Sci USA 103:1964–1969

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vlassenko AG, Vaishnavi SN, Couture L, Sacco D, Shannon BJ, Mach RH, Morris JC, Raichle ME, Mintun MA (2010) Spatial correlation between brain aerobic glycolysis and amyloid-β (Aβ) deposition. Proc Natl Acad Sci USA 107:17763–17767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walker LC, Cork LC (1999) The neurobiology of aging in nonhuman primates. In: Terry RD, Katzman R, Bick KL, Sisodia SS (eds) Alzheimer disease, 2nd edn. Lippincott, Williams, and Wilkins, Philadelphia, pp 233–243

    Google Scholar 

  • Walker LC, Kitt CA, Schwam E, Buckwald B, Garcia F, Sepinwall J, Price DL (1987) Senile plaques in aged squirrel monkeys. Neurobiol Aging 8:291–296

    CAS  PubMed  Google Scholar 

  • Wang X, Michaelis ML, Michaelis EK (2010) Functional genomics of brain aging and Alzheimer’s disease: focus on selective neuronal vulnerability. Curr Genomics 11:618–633

    PubMed Central  PubMed  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    CAS  PubMed  Google Scholar 

  • Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Carcinomzelle. Biochem Z 152:309–344

    CAS  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolkow CA, Kimura KD, Lee MS, Ruvkun G (2000) Regulation of C. elegans life-span by insulin like signaling in the nervous system. Science 290:147–150

    CAS  PubMed  Google Scholar 

  • Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci 31:7477–7485

    CAS  PubMed  Google Scholar 

  • Yakovlev PI, Lecours A (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell Science, Oxford, pp 3–70

    Google Scholar 

  • Yang Y, Mufson EJ, Herrup K (2003) Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease. J Neurosci 23:2557–2563

    CAS  PubMed  Google Scholar 

  • Yi JJ, Ehlers MD (2005) Ubiquitin and protein turnover in synapse function. Neuron 47:629–632

    CAS  PubMed  Google Scholar 

  • Zala D, Hinckelmann M-V, Yu H, Lyra da Cunha MM, Liot G, Cordelières FP, Marco S, Saudou F (2013) Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152:479–491

    CAS  PubMed  Google Scholar 

  • Zivraj KH, Tung YCL, Piper M, Gumy L, Fawcett JW, Yeo GSH, Holt CE (2010) Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J Neurosci 30:15464–15478

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (DGE-0801634, BCS-0827531, BCS-0827546) and the James S. McDonnell Foundation (22002078, 220020293).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy L. Bauernfeind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauernfeind, A.L., Barks, S.K., Duka, T. et al. Aerobic glycolysis in the primate brain: reconsidering the implications for growth and maintenance. Brain Struct Funct 219, 1149–1167 (2014). https://doi.org/10.1007/s00429-013-0662-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0662-z

Keywords

Navigation