Skip to main content

Advertisement

Log in

Microglia-derived proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1beta induce Purkinje neuronal apoptosis via their receptors in hypoxic neonatal rat brain

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The developing cerebellum is extremely vulnerable to hypoxia which can damage the Purkinje neurons. We hypothesized that this might be mediated by tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) derived from activated microglia as in other brain areas. One-day-old rats were subjected to hypoxia following, which the expression changes of various proteins in the cerebellum including hypoxia inducible factor-1α, TNF-α, IL-1β, TNF-R1 and IL-1R1 were analyzed. Following hypoxic exposure, TNF-α and IL-1β immunoexpression in microglia was enhanced coupled by that of TNF-R1 and IL-1R1 in the Purkinje neurons. Along with this, hypoxic microglia in vitro showed enhanced release of TNF-α and IL-1β whose receptor expression was concomitantly increased in the Purkinje neurons. In addition, nitric oxide (NO) level was significantly increased in the cerebellum and cultured microglia subjected to hypoxic exposure. Moreover, cultured Purkinje neurons treated with conditioned medium derived from hypoxic microglia underwent apoptosis but the incidence was significantly reduced when the cells were treated with the same medium that was neutralized with TNF-α/IL-1β antibody. We conclude that hypoxic microglia in the neonatal cerebellum produce increased amounts of NO, TNF-α and IL-1β which when acting via their respective receptors could induce Purkinje neuron death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

DAPI:

4′-6-Diamidino-2-phenylindole

DMEM:

Dulbecco’s modified Eagle’s medium

ELISA:

Enzyme-linked immunosorbent assay

HIF-1α:

Hypoxia inducible factor-1α

iNOS:

Inducible nitric oxide synthase

IL-1β:

Interleukin-1β

IL-1R1 :

Interleukin-1 receptor 1

NO:

Nitric oxide

PBS:

Phosphate buffered saline

PVDF:

Polyvinylidene difluoride

TNF-α:

Tumor necrosis factor-α

TNF-R1 :

Tumor necrosis factor receptor 1

TUNEL:

Terminal deoxynucleotidyl transferase (Tdt)-mediated dUTP nick end labeling

References

  • Andressen C, Blümcke I, Celio MR (1993) Calcium-binding proteins; selective markers of nerve cells. Cell Tissue Res 271:181–208

    Article  CAS  PubMed  Google Scholar 

  • Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP (2001) TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 4:1116–1122

    Article  CAS  PubMed  Google Scholar 

  • Bal-Price A, Brown GC (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 21:6480–6491

    CAS  PubMed  Google Scholar 

  • Barenberg P, Strahlendorf H, Strahlendorf J (2001) Hypoxia induces an excitotoxic-type of dark cell degeneration in cerebellar Purkinje neurons. Neurosci Res 40:245–254

    Article  CAS  PubMed  Google Scholar 

  • Biran V, Heine VM, Verney C, Sheldon RN, Spadafora R, Vexler ZS, Rowitch DH, Ferriero DM (2011) Cerebellar abnormalities following hypoxia alone compared to hypoxic-ischemic forebrain injury in the developing rat brain. Neurobiol Dis 41:138–146

    Article  PubMed  Google Scholar 

  • Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, Rothwell NJ (2001) Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci 21:5528–5534

    CAS  PubMed  Google Scholar 

  • Bracke-Tolkmitt R, Linden A, Canavan AG, Rockstroh B, Scholz E, Wessel K, Diener HC (1989) The cerebellum contributes to mental skills. Behav Neurosci 103:442–446

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brand M, Bignami A (1969) The effects of chronic hypoxia on the neonatal and infantile brain. Brain 92:233–254

    Article  CAS  PubMed  Google Scholar 

  • Carloni S, Mazzoni Cimino M, De Simoni MG, Perego C, Scopa C, Balduini W (2006) Simvastatin reduces caspase-3 activation and inflammatory markers induced by hypoxia-ischemia in the newborn rat. Neurobiol Dis 21:119–126

    Article  CAS  PubMed  Google Scholar 

  • Cervos-Navarro J, Diemer NH (1991) Selective vulnerability in brain hypoxia. Crit Rev Neurobiol 6:149–182

    CAS  PubMed  Google Scholar 

  • Deng YY, Lu J, Sivakumar V, Ling EA, Kaur C (2008) Amoeboid microglia in the periventricular white matter induces oligodendrocyte damage through expression of proinflammatory cytokines via MAP kinase signaling pathway in hypoxic neonatal rats. Brain Pathol 18:387–400

    Article  CAS  PubMed  Google Scholar 

  • Fan LW, Mitchell HJ, Lu-Tai T, Rhodes PG, Cai Z (2009) Interleukin-1β-induced brain injury in the neonatal rat can be ameliorated by α-phenyl-n-tert-butyl-nitrone. Exp Neurol 220:143–153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fiez JA, Petersen SE, Cheney MK, Raichle ME (1992) Impaired non-motor learning and error detection associated with cerebellar damage. Brain 115:155–178

    Article  PubMed  Google Scholar 

  • Fontaine V, Mohand-Said S, Hanoteau N, Fuchs C, Pfizenmaier K, Eisel U (2002) Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. J Neurosci 22:1–7

    Google Scholar 

  • Garthwaite J (2008) Concept of neural nitric oxide-mediated transmission. Eur J Neurosci 27:2783–2802

    Article  PubMed Central  PubMed  Google Scholar 

  • Gilman S (1992) Cerebellum and motor dysfunction. In: Asbury AK, McKhann GM, McDonald WI (eds) Diseases of the nervous system: clinical neurobiology, 2nd edn. W.B. Saunder, Philadelphia, pp 319–341

    Google Scholar 

  • Giulian D, Baker TJ (1986) Characterization of amoeboid microglia isolated from developing mammalian brain. J Neurosci 6:2163–2178

    CAS  PubMed  Google Scholar 

  • Griffiths AD, Lawrence KM (1974) The effect of hypoxia and hypoglycemia on the brain of newborn human infant. Dev Med Child Neurol 16:308–319

    Article  CAS  PubMed  Google Scholar 

  • Guo G, Bhat NR (2006) Hypoxia/reoxygenation differentially modulates NF-kappaB activation and iNOS expression in astrocytes and microglia. Antioxid Redox Signal 8:911–918

    Article  CAS  PubMed  Google Scholar 

  • Hirano T, Kasono K (1993) Spatial distribution of excitatory and inhibitory synapses on a Purkinje cell in a rat cerebellar culture. J Neurophysiol 70:1316–1325

    CAS  PubMed  Google Scholar 

  • Imamoto K, Leblond CP (1978) Radioautographic investigation of gliogenesis in the corpus callosum of young rats. II: origin of microglial cells. J Comp Neurol 180:139–163

    Article  CAS  PubMed  Google Scholar 

  • Ivy RB, Keele SW (1989) Timing functions of the cerebellum. J Cogn Neurosci 1:136–152

    Article  Google Scholar 

  • Kaur C, Ling EA (2008) Blood brain barrier in hypoxic-ischemic conditions. Curr Neurovasc Res 5:71–81

    Article  CAS  PubMed  Google Scholar 

  • Kaur C, Ling EA, Wong WC (1985) Transformation of amoeboid microglial cells into microglia in the corpus callosum of the postnatal rat brain: an electron microscopical study. Arch Histol Jpn 48:17–25

    Article  CAS  PubMed  Google Scholar 

  • Kaur C, Sivakumar V, Ang LS, Sundaresan A (2006) Hypoxic damage to the periventricular white matter in neonatal brain: role of vascular endothelial growth factor, nitric oxide and excitotoxicity. J Neurochem 98:1200–1216

    Article  CAS  PubMed  Google Scholar 

  • Leiner HC, Leiner AL, Dow RS (1986) Does the cerebellum contribute to mental skills? Behav Neurosci 100:443–454

    Article  CAS  PubMed  Google Scholar 

  • Limperopoulos C, du Plessis AJ (2006) Disorders of cerebellar growth and development. Curr Opin Pediatr 18:621–627

    Article  PubMed  Google Scholar 

  • Liu M, Cai T, Zhao F, Zheng G, Wang Q, Chen Y, Huang C, Luo W, Chen J (2009) Effect of microglia activation on dopaminergic neuronal injury induced by manganese, and its possible mechanism. Neurotox Res 16:42–49

    Article  CAS  PubMed  Google Scholar 

  • Loddick SA, Rothwell NJ (1996) Neuroprotective effects of human recombinant interleukin-1 receptor antagonist in focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 16:932–940

    Article  CAS  PubMed  Google Scholar 

  • Long-Smith CM, Collins L, Toulouse A, Sullivan M, Nolan YM (2010) Interleukin-1β contributes to dopaminergic neuronal death induced by lipopolysaccharide-stimulated rat glia in vitro. J Neuroimmunol 226:20–26

    Article  CAS  PubMed  Google Scholar 

  • Ma XC, Gottschall PE, Chen LT, Wiranowska M, Phelps CP (2002) Role and mechanisms of interleukin-1 in the modulation of neurotoxicity. NeuroImmunomodulation 10:199–207

    Article  CAS  PubMed  Google Scholar 

  • Mallard EC, Rees S, Stringer M, Cock ML, Harding R (1998) Effects of chronic placental insufficiency on brain development in fetal sheep. Pediatr Res 43:262–270

    Article  CAS  PubMed  Google Scholar 

  • Mander P, Borutaite V, Moncada S, Brown GC (2005) Nitric oxide from inflammatory-activated glia synergize with hypoxia to induce neuronal death. J Neurosci Res 79:208–215

    Article  CAS  PubMed  Google Scholar 

  • Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M (2004) Microglia promote the death of developing Purkinje cells. Neuron 41:535–547

    Article  CAS  PubMed  Google Scholar 

  • Moncada S, Bolaños JP (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97:1676–1689

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa T, Nakazawa C, Matsubara A, Noda K, Hisatomi T, She H, Michaud N, Hafezi-Moghadam A, Miller JW, Benowitz LI (2006) Tumor necrosis factor-alpha mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glucocoma. J Neurosci 26:12633–12641

    Article  CAS  PubMed  Google Scholar 

  • Pae EK, Chien P, Harper RM (2005) Intermittent hypoxia damages cerebellar cortex and deep nuclei. Neurosci Lett 375:123–128

    Article  CAS  PubMed  Google Scholar 

  • Relton JK, Rothwell NJ (1992) Interleukin-1 receptor antagonist inhibits ischaemic and excitotoxic neuronal damage in the rat. Brain Res Bull 29:43–46

    Article  Google Scholar 

  • Sattar N (2004) Inflammation and endothelial dysfunction: intimate companions in the pathogenesis of vascular disease? Clin Sci (Lond) 106:443–445

    Article  CAS  Google Scholar 

  • Semenza GL (1998) Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Gent Dev 8:588–594

    Article  CAS  Google Scholar 

  • Sivakumar V, Lu J, Ling EA, Kaur C (2008) Vascular endothelial growth factor and nitric oxide production in response to hypoxia in the choroid plexus in neonatal brain. Brain Pathol 996:71–85

    Article  Google Scholar 

  • Sivakumar V, Ling EA, Lu J, Kaur C (2010) Role of glutamate and its receptors and insulin-like growth factors in hypoxia induced periventricular white matter injury. Glia 58:507–523

    Article  PubMed  Google Scholar 

  • Sivakumar V, Foulds WS, Luu CD, Ling EA, Kaur C (2011) Retinal ganglion cell death is induced by microglia derived pro-inflammatory cytokines in the hypoxic neonatal retina. J Pathol 224:245–260

    Article  CAS  PubMed  Google Scholar 

  • Tezel G, Yang X, Yang J, Wax MB (2004) Role of tumor necrosis factor receptor-1 in the death of retinal ganglion cells following optic nerve crush injury in mice. Brain Res 996:202–212

    Article  CAS  PubMed  Google Scholar 

  • Towbin KL (1969) Mental retardation due to germinal matrix infarction. Science 164:156–161

    Article  CAS  PubMed  Google Scholar 

  • Towbin KL (1970) Central nervous system damage in the human fetus and newborn infant. Am J Dis Child 119:529–542

    Article  CAS  PubMed  Google Scholar 

  • Volpe JJ (1994) Brain injury caused by intraventricular hemorrhage: is indomethacin the silver bullet for prevention? Pediatrics 93:673–677

    CAS  PubMed  Google Scholar 

  • Volpe JJ (2001) Neurology of the newborn, 4th edn. W. B. Saunders, Philadelphia

    Google Scholar 

  • Yamasaki Y, Matsuura N, Shozuhara H, Onodera H, Itoyama Y, Kogure K (1995) Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke 26:676–681

    Article  CAS  PubMed  Google Scholar 

  • Yu MC, Yu WHA (1980) Effect of hypoxia on cerebellar development: morphologic and radioautographic studies. Exptl Neurol 70:652–664

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a research grant (R181-000-120-213) from National Medical Research Council of Singapore. Z. Zou was supported by a grant (No. 81260297) from the National Sciences Foundation of China.

Conflict of interest

There is no conflict of interest among the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charanjit Kaur.

Additional information

C. Kaur and E.-A. Ling contributed equally to the project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, C., Sivakumar, V., Zou, Z. et al. Microglia-derived proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1beta induce Purkinje neuronal apoptosis via their receptors in hypoxic neonatal rat brain. Brain Struct Funct 219, 151–170 (2014). https://doi.org/10.1007/s00429-012-0491-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0491-5

Keywords

Navigation