Skip to main content
Log in

Activation of type-1 cannabinoid receptor shifts the balance between excitation and inhibition towards excitation in layer II/III pyramidal neurons of the rat prelimbic cortex

  • Neuroscience
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Activation of the endocannabinoid (eCB) system by exogenous cannabinoids (drug abuse) can alter the physiology of the brain circuits involved in higher-order cognitive functions such as the medial prefrontal cortex (mPFC). A proper balance between excitation and inhibition (E/I balance) is critical for neuronal network oscillations underlying cognitive functions. Since type-1 cannabinoid receptors (CB1Rs), expressed in many brain areas including the mPFC, can modulate excitatory and inhibitory neurotransmission, we aimed to determine whether CB1R activation results in modifications of the E/I balance. We first confirm the presence of functional presynaptic CB1Rs that can modulate both excitatory and inhibitory inputs to layer II/III pyramidal neurons of the prelimbic (PL) area of the mPFC. By decomposing the synaptic response evoked by layer I stimulation into its excitatory and inhibitory components, we show that in vitro CB1R activation with the cannabinoid receptor agonists WIN55,212-2 (WIN) and CP-55940 (CP) modulates the balance between excitation and inhibition (E/I balance) of layer II/III pyramidal neurons. This treatment caused a significant shift of the E/I balance towards excitation, from 18/82 % to 25/75 % (WIN) and from 17/83 to 30/70 % (CP). Finally, when animals were injected with a cannabinoid receptor agonist, we observed a shift of the E/I balance (measured in vitro) towards excitation 1 h after WIN (24/76 %) or after CP injection (30/70 %) when compared to vehicle-injected animals (18/82 %). This modulation of the E/I balance by CB1Rs may thus be fundamental in the regulation of local PL cortical network excitability and could be the mechanism through which excessive CB1R activation (cannabis abuse) affects cognitive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Auclair N, Otani S, Soubrie P, Crepel F (2000) Cannabinoids modulate synaptic strength and plasticity at glutamatergic synapses of rat prefrontal cortex pyramidal neurons. J Neurophysiol 83(6):3287–3293

    CAS  PubMed  Google Scholar 

  2. Bannister AP (2005) Inter- and intra-laminar connections of pyramidal cells in the neocortex. Neurosci Res 53(2):95–103

    Article  PubMed  Google Scholar 

  3. Baraban SC, Tallent MK (2004) Interneuron diversity series: interneuronal neuropeptides—endogenous regulators of neuronal excitability. Trends Neurosci 27(3):135–142

    Article  CAS  PubMed  Google Scholar 

  4. Bodor AL, Katona I, Nyiri G, Mackie K, Ledent C, Hajos N, Freund TF (2005) Endocannabinoid signaling in rat somatosensory cortex: laminar differences and involvement of specific interneuron types. J Neurosci 25(29):6845–6856

    Article  CAS  PubMed  Google Scholar 

  5. Borg-Graham LJ, Monier C, Fregnac Y (1998) Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393(6683):369–373

    Article  CAS  PubMed  Google Scholar 

  6. Bosier B, Sarre S, Smolders I, Michotte Y, Hermans E, Lambert DM (2010) Revisiting the complex influences of cannabinoids on motor functions unravels pharmacodynamic differences between cannabinoid agonists. Neuropharmacology 59(6):503–510

    Article  CAS  PubMed  Google Scholar 

  7. Brown SP, Brenowitz SD, Regehr WG (2003) Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nat Neurosci 6(10):1048–1057

    Article  CAS  PubMed  Google Scholar 

  8. Castillo PE, Younts TJ, Chavez AE, Hashimotodani Y (2012) Endocannabinoid signaling and synaptic function. Neuron 76(1):70–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, Noebels JL, Baraban SC, Rubenstein JL (2005) Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci 8(8):1059–1068

    Article  CAS  PubMed  Google Scholar 

  10. Cruikshank SJ, Lewis TJ, Connors BW (2007) Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex. Nat Neurosci 10(4):462–468

    CAS  PubMed  Google Scholar 

  11. Deiana S, Watanabe A, Yamasaki Y, Amada N, Arthur M, Fleming S, Woodcock H, Dorward P, Pigliacampo B, Close S, Platt B, Riedel G (2012) Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Delta(9)-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive-compulsive behaviour. Psychopharmacology (Berl) 219(3):859–873

    Article  CAS  Google Scholar 

  12. den Boon FS, Chameau P, Houthuijs K, Bolijn S, Mastrangelo N, Kruse CG, Maccarrone M, Wadman WJ, Werkman TR (2014) Endocannabinoids produced upon action potential firing evoke a Cl current via type-2 cannabinoid receptors in the medial prefrontal cortex. Pflugers Arch. doi:10.1007/s00424-014-1502-6

    Google Scholar 

  13. den Boon FS, Chameau P, Schaafsma-Zhao Q, van Aken W, Bari M, Oddi S, Kruse CG, Maccarrone M, Wadman WJ, Werkman TR (2012) Excitability of prefrontal cortical pyramidal neurons is modulated by activation of intracellular type-2 cannabinoid receptors. Proc Natl Acad Sci U S A 109(9):3534–3539

    Article  Google Scholar 

  14. Devane WA, Dysarz FA 3rd, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34(5):605–613

    CAS  PubMed  Google Scholar 

  15. Douglas RJ, Martin KA (2007) Mapping the matrix: the ways of neocortex. Neuron 56(2):226–238

    Article  CAS  PubMed  Google Scholar 

  16. Fu J, Bottegoni G, Sasso O, Bertorelli R, Rocchia W, Masetti M, Guijarro A, Lodola A, Armirotti A, Garau G, Bandiera T, Reggiani A, Mor M, Cavalli A, Piomelli D (2012) A catalytically silent FAAH-1 variant drives anandamide transport in neurons. Nat Neurosci 15(1):64–69

    Article  CAS  Google Scholar 

  17. Gilbert CD, Sigman M (2007) Brain states: top-down influences in sensory processing. Neuron 54(5):677–696

    Article  CAS  PubMed  Google Scholar 

  18. Grotenhermen F (2003) Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet 42(4):327–360

    Article  CAS  PubMed  Google Scholar 

  19. Guo J, Ikeda SR (2004) Endocannabinoids modulate N-type calcium channels and G-protein-coupled inwardly rectifying potassium channels via CB1 cannabinoid receptors heterologously expressed in mammalian neurons. Mol Pharmacol 65(3):665–674

    Article  CAS  PubMed  Google Scholar 

  20. Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 26(17):4535–4545

    Article  CAS  PubMed  Google Scholar 

  21. Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11(2):563–583

    CAS  PubMed  Google Scholar 

  22. Higley MJ, Contreras D (2006) Balanced excitation and inhibition determine spike timing during frequency adaptation. J Neurosci 26(2):448–457

    Article  CAS  PubMed  Google Scholar 

  23. Hill EL, Gallopin T, Ferezou I, Cauli B, Rossier J, Schweitzer P, Lambolez B (2007) Functional CB1 receptors are broadly expressed in neocortical GABAergic and glutamatergic neurons. J Neurophysiol 97(4):2580–2589

    Article  CAS  PubMed  Google Scholar 

  24. Hoffman AF, Lupica CR (2000) Mechanisms of cannabinoid inhibition of GABA(A) synaptic transmission in the hippocampus. J Neurosci 20(7):2470–2479

    CAS  PubMed  Google Scholar 

  25. House DR, Elstrott J, Koh E, Chung J, Feldman DE (2011) Parallel regulation of feedforward inhibition and excitation during whisker map plasticity. Neuron 72(5):819–831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Howlett AC, Reggio PH, Childers SR, Hampson RE, Ulloa NM, Deutsch DG (2011) Endocannabinoid tone versus constitutive activity of cannabinoid receptors. Br J Pharmacol 163(7):1329–1343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Isaacson JS, Scanziani M (2011) How inhibition shapes cortical activity. Neuron 72(2):231–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89(1):309–380

    Article  CAS  PubMed  Google Scholar 

  29. Katona I, Freund TF (2012) Multiple functions of endocannabinoid signaling in the brain. Annu Rev Neurosci 35:529–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K, Freund TF (1999) Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19(11):4544–4558

    CAS  PubMed  Google Scholar 

  31. Katona I, Urban GM, Wallace M, Ledent C, Jung KM, Piomelli D, Mackie K, Freund TF (2006) Molecular composition of the endocannabinoid system at glutamatergic synapses. J Neurosci 26(21):5628–5637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kavalali ET, Chung C, Khvotchev M, Leitz J, Nosyreva E, Raingo J, Ramirez DM (2011) Spontaneous neurotransmission: an independent pathway for neuronal signaling? Physiology (Bethesda) 26(1):45–53

    Article  CAS  Google Scholar 

  33. Kreitzer AC, Regehr WG (2001) Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29(3):717–727

    Article  CAS  PubMed  Google Scholar 

  34. Kucewicz MT, Tricklebank MD, Bogacz R, Jones MW (2011) Dysfunctional prefrontal cortical network activity and interactions following cannabinoid receptor activation. J Neurosci 31(43):15560–15568

    Article  CAS  PubMed  Google Scholar 

  35. Lafourcade M, Elezgarai I, Mato S, Bakiri Y, Grandes P, Manzoni OJ (2007) Molecular components and functions of the endocannabinoid system in mouse prefrontal cortex. PLoS ONE 2(8):e709

    Article  PubMed Central  PubMed  Google Scholar 

  36. Le Roux N, Amar M, Baux G, Fossier P (2006) Homeostatic control of the excitation-inhibition balance in cortical layer 5 pyramidal neurons. Eur J Neurosci 24(12):3507–3518

    Article  PubMed  Google Scholar 

  37. Le Roux N, Amar M, Moreau A, Baux G, Fossier P (2008) Impaired GABAergic transmission disrupts normal homeostatic plasticity in rat cortical networks. Eur J Neurosci 27(12):3244–3256

    Article  PubMed Central  PubMed  Google Scholar 

  38. Le Roux N, Amar M, Moreau A, Fossier P (2007) Involvement of NR2A- or NR2B-containing N-methyl-D-aspartate receptors in the potentiation of cortical layer 5 pyramidal neurone inputs depends on the developmental stage. Eur J Neurosci 26(2):289–301

    Article  PubMed Central  PubMed  Google Scholar 

  39. Leirer VO, Yesavage JA, Morrow DG (1991) Marijuana carry-over effects on aircraft pilot performance. Aviat Space Environ Med 62(3):221–227

    CAS  PubMed  Google Scholar 

  40. Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6(4):312–324

    Article  CAS  PubMed  Google Scholar 

  41. Liu BH, Li YT, Ma WP, Pan CJ, Zhang LI, Tao HW (2011) Broad inhibition sharpens orientation selectivity by expanding input dynamic range in mouse simple cells. Neuron 71(3):542–554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5(10):793–807

    Article  CAS  PubMed  Google Scholar 

  43. Mato S, Chevaleyre V, Robbe D, Pazos A, Castillo PE, Manzoni OJ (2004) A single in-vivo exposure to delta 9THC blocks endocannabinoid-mediated synaptic plasticity. Nat Neurosci 7(6):585–586

    Article  CAS  PubMed  Google Scholar 

  44. Monier C, Chavane F, Baudot P, Graham LJ, Fregnac Y (2003) Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron 37(4):663–680

    Article  CAS  PubMed  Google Scholar 

  45. Monier C, Fournier J, Fregnac Y (2008) In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices. J Neurosci Methods 169(2):323–365

    Article  CAS  PubMed  Google Scholar 

  46. Murray JD, Anticevic A, Gancsos M, Ichinose M, Corlett PR, Krystal JH, Wang XJ (2014) Linking microcircuit dysfunction to cognitive impairment: effects of disinhibition associated with schizophrenia in a cortical working memory model. Cereb Cortex 24(4):859–872

    Article  PubMed Central  PubMed  Google Scholar 

  47. Neu A, Foldy C, Soltesz I (2007) Postsynaptic origin of CB1-dependent tonic inhibition of GABA release at cholecystokinin-positive basket cell to pyramidal cell synapses in the CA1 region of the rat hippocampus. J Physiol 578(Pt 1):233–247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Parolaro D, Realini N, Vigano D, Guidali C, Rubino T (2010) The endocannabinoid system and psychiatric disorders. Exp Neurol 224(1):3–14

    Article  CAS  PubMed  Google Scholar 

  49. Peters A, Kara DA (1985) The neuronal composition of area 17 of rat visual cortex. I The pyramidal cells J Comp Neurol 234(2):218–241

    Article  CAS  Google Scholar 

  50. Petilla Interneuron Nomanclature Group, Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, Burkhalter A, Buzsaki G, Cauli B, Defelipe J, Fairen A, Feldmeyer D, Fishell G, Fregnac Y, Freund TF, Gardner D, Gardner EP, Goldberg JH, Helmstaedter M, Hestrin S, Karube F, Kisvarday ZF, Lambolez B, Lewis DA, Marin O, Markram H, Munoz A, Packer A, Petersen CC, Rockland KS, Rossier J, Rudy B, Somogyi P, Staiger JF, Tamas G, Thomson AM, Toledo-Rodriguez M, Wang Y, West DC, Yuste R (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9(7):557–568

    Article  Google Scholar 

  51. Petitet F, Jeantaud B, Bertrand P, Imperato A (1999) Cannabinoid penetration into mouse brain as determined by ex vivo binding. Eur J Pharmacol 374(3):417–421

    Article  CAS  PubMed  Google Scholar 

  52. Poleg-Polsky A, Diamond JS (2011) Imperfect space clamp permits electrotonic interactions between inhibitory and excitatory synaptic conductances, distorting voltage clamp recordings. PLoS ONE 6(4):e19463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Poo C, Isaacson JS (2009) Odor representations in olfactory cortex: “sparse” coding, global inhibition, and oscillations. Neuron 62(6):850–861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Robbe D, Alonso G, Duchamp F, Bockaert J, Manzoni OJ (2001) Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens. J Neurosci 21(1):109–116

    CAS  PubMed  Google Scholar 

  55. Rubenstein JL (2010) Three hypotheses for developmental defects that may underlie some forms of autism spectrum disorder. Curr Opin Neurol 23(2):118–123

    Article  PubMed  Google Scholar 

  56. Rubio-Garrido P, Perez-de-Manzo F, Porrero C, Galazo MJ, Clasca F (2009) Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb Cortex 19(10):2380–2395

    Article  PubMed  Google Scholar 

  57. Shu Y, Hasenstaub A, McCormick DA (2003) Turning on and off recurrent balanced cortical activity. Nature 423(6937):288–293

    Article  CAS  PubMed  Google Scholar 

  58. Somogyi P, Tamas G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 26(2–3):113–135

    Article  CAS  PubMed  Google Scholar 

  59. Tan AY, Brown BD, Scholl B, Mohanty D, Priebe NJ (2011) Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex. J Neurosci 31(34):12339–12350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Thomson AM, Bannister AP (2003) Interlaminar connections in the neocortex. Cereb Cortex 13(1):5–14

    Article  PubMed  Google Scholar 

  61. Thomson AM, Lamy C (2007) Functional maps of neocortical local circuitry. Front Neurosci 1(1):19–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Tsou K, Mackie K, Sanudo-Pena MC, Walker JM (1999) Cannabinoid CB1 receptors are localized primarily on cholecystokinin-containing GABAergic interneurons in the rat hippocampal formation. Neuroscience 93(3):969–975

    Article  CAS  PubMed  Google Scholar 

  63. Wehr M, Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426(6965):442–446

    Article  CAS  PubMed  Google Scholar 

  64. Williams SR, Mitchell SJ (2008) Direct measurement of somatic voltage clamp errors in central neurons. Nat Neurosci 11(7):790–798

    Article  CAS  PubMed  Google Scholar 

  65. Wu GK, Arbuckle R, Liu BH, Tao HW, Zhang LI (2008) Lateral sharpening of cortical frequency tuning by approximately balanced inhibition. Neuron 58(1):132–143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O'Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C, Huguenard JR, Hegemann P, Deisseroth K (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477(7363):171–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Yoshino H, Miyamae T, Hansen G, Zambrowicz B, Flynn M, Pedicord D, Blat Y, Westphal RS, Zaczek R, Lewis DA, Gonzalez-Burgos G (2011) Postsynaptic diacylglycerol lipase mediates retrograde endocannabinoid suppression of inhibition in mouse prefrontal cortex. J Physiol 589(Pt 20):4857–4884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Zhang Z, Jiao YY, Sun QQ (2011) Developmental maturation of excitation and inhibition balance in principal neurons across four layers of somatosensory cortex. Neuroscience 174:10–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Willem van Aken for help with the immunohistochemical experiments and Dr. J.A. Gorter for his comments on the manuscript. Author contributions are as follows: conception and design: F.S.B., T.R.W. and P.C.; collection of data: F.S.B., Q.S., K.H. and P.C.; analysis and interpretation of data: F.S.B., T.R.W., W.J.W. and P.C.; drafting and revision of the article: F.S.B., T.R.W. and P.C; and critical revision of the manuscript: T.V., C.G.K. and W.J.W. All authors approved the final version of the manuscript. This study was supported by Dutch Top Institute Pharma Grant T5-107-1.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taco R. Werkman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 855 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

den Boon, F.S., Werkman, T.R., Schaafsma-Zhao, Q. et al. Activation of type-1 cannabinoid receptor shifts the balance between excitation and inhibition towards excitation in layer II/III pyramidal neurons of the rat prelimbic cortex. Pflugers Arch - Eur J Physiol 467, 1551–1564 (2015). https://doi.org/10.1007/s00424-014-1586-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1586-z

Keywords

Navigation