Skip to main content
Log in

Ether-à-gogo-related gene (erg1) potassium channels shape the dark response of horizontal cells in the mammalian retina

  • Sensory Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Postsynaptic to photoreceptors, horizontal cells face prolonged exposure to glutamate in the dark. Therefore, efficient hyperpolarizing mechanisms are crucial to keep horizontal cells within an operating range and to reduce glutamate-induced excitotoxicity. Combining electrophysiology, single-cell reverse transcriptase polymerase chain reaction, and immunocytochemistry, we found that horizontal cell bodies but not their axon terminals express the ether-à-gogo-related gene isoform 1 (erg1) K+ channel. Erg1-mediated outward currents displayed voltage-dependent activation and C-type inactivation. Recovery from inactivation involved a transient open state. Gating of erg1 channels kept the voltage response to glutamate brief and at physiological amplitudes. With erg1 channels blocked, the response of horizontal cells to the onset of darkness was significantly enhanced. These results indicate a functional dichotomy between horizontal cell bodies and axon terminals in the processing of photoreceptor signals. The dark response thus reflects a finely tuned balance determined by the successive gating of ionotropic glutamate receptors and erg1 channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arcangeli A, Becchetti A, Mannini A, Mugnai G, De Filippi P, Tarone G, Del Bene MR, Barletta E, Wanke E, Olivotto M (1993) Integrin-mediated neurite outgrowth in neuroblastoma cells depends on the activation of potassium channels. J Cell Biol 120:1131–1143

    Google Scholar 

  2. Arcangeli A, Bianchi L, Becchetti A, Faravelli L, Coronnello M, Mini E, Olivotto M, Wanke E (1995) A novel inward-rectifying K+ current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells. J Physiol 489:455–471

    Google Scholar 

  3. Arcangeli A, Rosati B, Cherubini A, Crociani O, Fontana L, Ziller C, Wanke E, Olivotto M (1997) HERG- and IRK-like inward rectifier currents are sequentially expressed during neuronal development of neural crest cells and their derivatives. Eur J Neurosci 9:2596–2604

    Google Scholar 

  4. Barros F, Delgado LM, del Camino D, de la PP (1992) Characteristics and modulation by thyrotropin-releasing hormone of an inwardly rectifying K+ current in patch-perforated GH3 anterior pituitary cells. Pflugers Arch 422:31–39

    Google Scholar 

  5. Bauer CK, Engeland B, Wulfsen I, Ludwig J, Pongs O, Schwarz JR (1998) RERG is a molecular correlate of the inward-rectifying K current in clonal rat pituitary cells. Receptors Channels 6:19–29

    Google Scholar 

  6. Bauer CK, Meyerhof W, Schwarz JR (1990) An inward-rectifying K+ current in clonal rat pituitary cells and its modulation by thyrotrophin-releasing hormone. J Physiol 429:169–189

    Google Scholar 

  7. Bauer CK, Schafer R, Schiemann D, Reid G, Hanganu I, Schwarz JR (1999) A functional role of the erg-like inward-rectifying K+ current in prolactin secretion from rat lactotrophs. Mol Cell Endocrinol 148:37–45

    Google Scholar 

  8. Bian J, Cui J, McDonald TV (2001) HERG K(+) channel activity is regulated by changes in phosphatidyl inositol 4,5-bisphosphate. Circ Res 89:1168–1176

    Google Scholar 

  9. Chiesa N, Rosati B, Arcangeli A, Olivotto M, Wanke E (1997) A novel role for HERG K+ channels: spike-frequency adaptation. J Physiol 501:313–318

    Google Scholar 

  10. Cui J, Melman Y, Palma E, Fishman GI, McDonald TV (2000) Cyclic AMP regulates the HERG K(+) channel by dual pathways. Curr Biol 10:671–674

    Google Scholar 

  11. Feigenspan A, Weiler R (2004) Electrophysiological properties of mouse horizontal cell GABAA receptors. J Neurophysiol 92:2789–2801

    Google Scholar 

  12. Golard A, Witkovsky P, Tranchina D (1992) Membrane currents of horizontal cells isolated from turtle retina. J Neurophysiol 68:351–361

    Google Scholar 

  13. Guasti L, Cilia E, Crociani O, Hofmann G, Polvani S, Becchetti A, Wanke E, Tempia F, Arcangeli A (2005) Expression pattern of the ether-a-go-go-related (ERG) family proteins in the adult mouse central nervous system: evidence for coassembly of different subunits. J Comp Neurol 491:157–174

    Google Scholar 

  14. Haverkamp S, Wässle H (2000) Immunocytochemical analysis of the mouse retina. J Comp Neurol 424:1–23

    Google Scholar 

  15. He S, Weiler R, Vaney DI (2000) Endogenous dopaminergic regulation of horizontal cell coupling in the mammalian retina. J Comp Neurol 418:33–40

    Google Scholar 

  16. Hirdes W, Schweizer M, Schuricht KS, Guddat SS, Wulfsen I, Bauer CK, Schwarz JR (2005) Fast erg K+ currents in rat embryonic serotonergic neurones. J Physiol 564:33–49

    Google Scholar 

  17. Johnson JP, Jr., Balser JR, Bennett PB (2001) A novel extracellular calcium sensing mechanism in voltage-gated potassium ion channels. J Neurosci 21:4143–4153

    Google Scholar 

  18. Jones EM, Roti Roti EC, Wang J, Delfosse SA, Robertson GA (2004) Cardiac I Kr channels minimally comprise hERG 1a and 1b subunits. J Biol Chem 279:44690–44694

    Google Scholar 

  19. Kolb H (1974) The connections between horizontal cells and photoreceptors in the retina of the cat: electron microscopy of Golgi preparations. J Comp Neurol 155:1–14

    Google Scholar 

  20. Lees-Miller JP, Kondo C, Wang L, Duff HJ (1997) Electrophysiological characterization of an alternatively processed ERG K+ channel in mouse and human hearts. Circ Res 81:719–726

    Google Scholar 

  21. Li Q, Lau A, Morris TJ, Guo L, Fordyce CB, Stanley EF (2004) A syntaxin 1, Gαo, and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J Neurosci 24:4070–4081

    Google Scholar 

  22. Linberg KA, Fisher SK (1988) Ultrastructural evidence that horizontal cell axon terminals are presynaptic in the human retina. J Comp Neurol 268:281–297

    Google Scholar 

  23. Liu GX, Derst C, Schlichthorl G, Heinen S, Seebohm G, Bruggemann A, Kummer W, Veh RW, Daut J, Preisig-Muller R (2001) Comparison of cloned Kir2 channels with native inward rectifier K+ channels from guinea-pig cardiomyocytes. J Physiol 532:115–126

    Google Scholar 

  24. Löhrke S, Hofmann HD (1994) Voltage-gated currents of rabbit A- and B-type horizontal cells in retinal monolayer cultures. Vis Neurosci 369:369–378

    Google Scholar 

  25. London B, Trudeau MC, Newton KP, Beyer AK, Copeland NG, Gilbert DJ, Jenkins NA, Satler CA, Robertson GA (1997) Two isoforms of the mouse ether-a-go-go-related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K+ current. Circ Res 81:870–878

    Google Scholar 

  26. Mohammad S, Zhou Z, Gong Q, January CT (1997) Blockage of the HERG human cardiac K+ channel by the gastrointestinal prokinetic agent cisapride. Am J Physiol 273:H2534–H2538

    Google Scholar 

  27. Nie L, Gratton MA, Mu KJ, Dinglasan JN, Feng W, Yamoah EN (2005) Expression and functional phenotype of mouse ERG K+ channels in the inner ear: potential role in K+ regulation in the inner ear. J Neurosci 25:8671–8679

    Google Scholar 

  28. Ohya S, Asakura K, Muraki K, Watanabe M, Imaizumi Y (2002) Molecular and functional characterization of ERG, KCNQ, and KCNE subtypes in rat stomach smooth muscle. Am J Physiol Gastrointest Liver Physiol 282:G277–G287

    Google Scholar 

  29. Ohya S, Horowitz B, Greenwood IA (2002) Functional and molecular identification of ERG channels in murine portal vein myocytes. Am J Physiol Cell Physiol 283:C866–C877

    Google Scholar 

  30. Papa M, Boscia F, Canitano A, Castaldo P, Sellitti S, Annunziato L, Taglialatela M (2003) Expression pattern of the ether-a-gogo-related (ERG) K+ channel-encoding genes ERG1, ERG2, and ERG3 in the adult rat central nervous system. J Comp Neurol 466:119–135

    Google Scholar 

  31. Peichl L, Gonzalez-Soriano J (1993) Unexpected presence of neurofilaments in axon-bearing horizontal cells of the mammalian retina. J Neurosci 13:4091–4100

    Google Scholar 

  32. Peichl L, Gonzalez-Soriano J (1994) Morphological types of horizontal cell in rodent retinae: a comparison of rat, mouse, gerbil, and guinea pig. Vis Neurosci 11:501–517

    Google Scholar 

  33. Perrin MJ, Kuchel PW, Campbell TJ, Vandenberg JI (2008) Drug binding to the inactivated state is necessary but not sufficient for high affinity binding to hERG channels. Mol Pharmacol 74:1443–1452

    Google Scholar 

  34. Pond AL, Scheve BK, Benedict AT, Petrecca K, Van Wagoner DR, Shrier A, Nerbonne JM (2000) Expression of distinct ERG proteins in rat, mouse, and human heart. Relation to functional I Kr channels. J Biol Chem 275:5997–6006

    Google Scholar 

  35. Sacco T, Bruno A, Wanke E, Tempia F (2003) Functional roles of an ERG current isolated in cerebellar Purkinje neurons. J Neurophysiol 90:1817–1828

    Google Scholar 

  36. Sanguinetti MC, Jurkiewicz NK (1990) Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195–215

    Google Scholar 

  37. Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440:463–469

    Google Scholar 

  38. Schönherr R, Heinemann SH (1996) Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel. J Physiol 493:635–642

    Google Scholar 

  39. Schubert T, Weiler R, Feigenspan A (2006) Intracellular calcium is regulated by different pathways in horizontal cells of the mouse retina. J Neurophysiol 96:1278–1292

    Google Scholar 

  40. Shelley J, Dedek K, Schubert T, Feigenspan A, Schultz K, Hombach S, Willecke K, Weiler R (2006) Horizontal cell receptive fields are reduced in connexin57-deficient mice. Eur J Neurosci 23:3176–3186

    Google Scholar 

  41. Shi W, Wymore RS, Wang H-S, Pan Z, Cohen IS, MacKinnon D, Dixon JE (1997) Identification of two nervous system-specific members of the erg potassium channel gene family. J Neurosci 17:9423–9432

    Google Scholar 

  42. Shibasaki T (1987) Conductance and kinetics of delayed rectifier potassium channels in nodal cells of the rabbit heart. J Physiol 387:227–250

    Google Scholar 

  43. Smith PL, Baukrowitz T, Yellen G (1996) The inward rectification mechanism of the HERG cardiac potassium channel. Nature 379:833–836

    Google Scholar 

  44. Spector PS, Curran ME, Zou A, Keating MT, Sanguinetti MC (1996) Fast inactivation causes rectification of the I Kr channel. J Gen Physiol 107:611–619

    Google Scholar 

  45. Sturm P, Wimmers S, Schwarz JR, Bauer CK (2005) Extracellular potassium effects are conserved within the rat erg K+ channel family. J Physiol 564:329–345

    Google Scholar 

  46. Suessbrich H, Schonherr R, Heinemann SH, Attali B, Lang F, Busch AE (1997) The inhibitory effect of the antipsychotic drug haloperidol on HERG potassium channels expressed in Xenopus oocytes. Br J Pharmacol 120:968–974

    Google Scholar 

  47. Tachibana M (1983) Ionic currents of solitary horizontal cells isolated from goldfish retina. J Physiol 345:329–351

    Google Scholar 

  48. Topert C, Doring F, Wischmeyer E, Karschin C, Brockhaus J, Ballanyi K, Derst C, Karschin A (1998) Kir2.4: a novel K+ inward rectifier channel associated with motoneurons of cranial nerve nuclei. J Neurosci 18:4096–4105

    Google Scholar 

  49. Trudeau MC, Warmke JW, Ganetzky B, Robertson GA (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269:92–95

    Google Scholar 

  50. Ueda Y, Kaneko A, Kaneda M (1992) Voltage-dependent ionic currents in solitary horizontal cells isolated from cat retina. J Neurophysiol 68:1143–1150

    Google Scholar 

  51. Wang J, Della PK, Wang H, Karczewski J, Connolly TM, Koblan KS, Bennett PB, Salata JJ (2003) Functional and pharmacological properties of canine ERG potassium channels. Am J Physiol Heart Circ Physiol 284:H256–H267

    Google Scholar 

  52. Wang S, Liu S, Morales MJ, Strauss HC, Rasmusson RL (1997) A quantitative analysis of the activation and inactivation kinetics of HERG expressed in Xenopus oocytes. J Physiol 502:45–60

    Google Scholar 

  53. Warmke JW, Ganetzky B (1994) A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci U S A 91:3438–3442

    Google Scholar 

  54. Weerapura M, Nattel S, Chartier D, Caballero R, Hebert TE (2002) A comparison of currents carried by HERG, with and without coexpression of MiRP1, and the native rapid delayed rectifier current. Is MiRP1 the missing link? J Physiol 540:15–27

    Google Scholar 

  55. Weerapura M, Nattel S, Courtemanche M, Doern D, Ethier N, Hebert T (2000) State-dependent barium block of wild-type and inactivation-deficient HERG channels in Xenopus oocytes. J Physiol 526:265–278

    Google Scholar 

  56. Wimmers S, Wulfsen I, Bauer CK, Schwarz JR (2001) Erg1, erg2 and erg3 K channel subunits are able to form heteromultimers. Pflugers Arch 441:450–455

    Google Scholar 

  57. Zhang DQ, Sun Z, McMahon DG (2006) Modulation of A-type potassium currents in retinal horizontal cells by extracellular calcium and zinc. Vis Neurosci 23:825–832

    Google Scholar 

  58. Zhou Z, Gong Q, Ye B, Fan Z, Makielski JC, Robertson GA, January CT (1998) Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J 74:230–241

    Google Scholar 

Download references

Acknowledgments

We thank Susanne Wallenstein for excellent technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Feigenspan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feigenspan, A., Trümpler, J., Dirks, P. et al. Ether-à-gogo-related gene (erg1) potassium channels shape the dark response of horizontal cells in the mammalian retina. Pflugers Arch - Eur J Physiol 458, 359–377 (2009). https://doi.org/10.1007/s00424-008-0609-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0609-z

Keywords

Navigation