Skip to main content

Advertisement

Log in

Prenatal stress alters microglial development and distribution in postnatal rat brain

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Stress affects microglial function and viability during adulthood and early postnatal life; however, it is unknown whether stress to the pregnant dam might alter offspring microglia. The effects of prenatal stress on microglial development and distribution in the postnatal brain were studied using Wistar rats. Prenatal stress consisting of 20 min of forced swimming occurred on embryonic days 10–20. On postnatal days 1 and 10, stressed and control pups were killed. Microglia were identified using Griffonia simplicifolia lectin and quantified in the whole encephalon. In addition, plasma corticosterone was measured in dams at embryonic day 20, and in pups on postnatal days 1 and 10. At postnatal day 1, there was an increase in number of ramified microglia in the parietal, entorhinal and frontal cortices, septum, basal ganglia, thalamus, medulla oblongata and internal capsule in the stressed pups as compared to controls, but also there was a reduction of amoeboid microglia and the total number of microglia in the corpus callosum. By postnatal day 10, there were no differences in the morphologic type or the distribution of microglia between the prenatal stress and control groups, except in the corpus callosum; where prenatal stress decreased the number of ramified microglia. The stress procedure was effective in producing plasma rise in corticosterone levels of pregnant rats at embryonic day 20 when compared to same age controls. Prenatal stress reduced the number of immature microglia and promoted an accelerated microglial differentiation into a ramified form. These findings may be related to an increase in plasma corticosterone in the pregnant dam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abel EL (1993) Physiological correlates of the forced swim test in rats. Physiol Behav 54:309–317

    Article  PubMed  CAS  Google Scholar 

  2. Abel EL, Hannigan JH (1992) Effects of chronic forced swimming and exposure to alarm substance: physiological and behavioral consequences. Physiol Behav 52:781–785

    Article  PubMed  CAS  Google Scholar 

  3. Altman J, Bayer SA (1995) Atlas of prenatal rat brain development. CRC Press, Boca Ratón

    Google Scholar 

  4. Arya V, Demarco VG, Issar M, Hochhaus G (2006) Contrary to adult, neonatal rats show pronounced brain uptake of corticosteorids. Drug Met Disp 34:939–942

    CAS  Google Scholar 

  5. Ashwell K (1990) Microglia and cell death in the developing mouse cerebellum. Dev Brain Res 55:219–230

    Article  CAS  Google Scholar 

  6. Barros VG, Duhalde-Vega M, Caltana L, Brusco A, Antonelli MC (2006) Astrocyte-neuron vulnerability to prenatal stress in adult rat brain. J Neurosci Res 83:787–800

    Article  PubMed  CAS  Google Scholar 

  7. Binik YW, Theriault G, Shustak B (1977) Sudden death in the laboratory rat: cardiac function, sensory and experimental factors in swimming deaths. Psychosom Med 39:82–92

    PubMed  CAS  Google Scholar 

  8. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters. Design, innovation, and discovery. Wiley-Interscience, New Jersey

    Google Scholar 

  9. Bruner C, Vargas I (1994) The activity of rats in a swimming situation as a function of water temperature. Physiol Behav 55:21–28

    Article  PubMed  CAS  Google Scholar 

  10. Chan WY, Kohsaka S, Rezaie P (2007) The origin and cell lineage of microglia: new concepts. Brain Res Rev 53:344–354

    Article  PubMed  CAS  Google Scholar 

  11. Chugani DC, Kedersha NL, Rome LH (1991) Vault immunofluorescence in the brain: new insights regarding the origin of microglia. J Neurosci 11:256–268

    PubMed  CAS  Google Scholar 

  12. Dalmau I, Finsen B, Zimmer J, González B, Castellano B (1998) Development of microglia in the postnatal rat hippocampus. Hippocampus 8:458–474

    Article  PubMed  CAS  Google Scholar 

  13. Dalmau I, Vela JM, González B, Finsen B, Castellano B (2003) Dynamics of microglia in the developing rat brain. J Comp Neurol 458:144–157

    Article  PubMed  Google Scholar 

  14. DalZotto S, Martí O, Armario A (2000) Influence of single or repeated experience of rats with forced swimming on behavioral and physiological responses to the stressor. Behav Brain Res 114:175–181

    Article  CAS  Google Scholar 

  15. De Vos K (2004) Cell counter. In: Rasband WS. Image J. National Institutes of Health, Bethesda, Maryland, USA. http://rsb.info.nih.gov/ij/1997–2005

  16. Earle KL, Mitrofanis J (1998) Development of glia and blood vessels in the internal capsule of rats. J Neurocytol 27:127–139

    Article  PubMed  CAS  Google Scholar 

  17. Ganter S, Northoff H, Mannel D, Gebicke-Harter PJ (1992) Growth control of cultured microglia. J Neurosci Res 33:218–230

    Article  PubMed  CAS  Google Scholar 

  18. Gavrilovic L, Dronjak S (2005) Activation of rat pituitary–adrenocortical and sympathoadrenomedullary system in response to different stressors. Neuro Endocrinol Lett 26:515–520

    PubMed  CAS  Google Scholar 

  19. Gómez-González B, Escobar A (2009) Altered functional development of the blood–brain barrier after early life stress in the rat. Brain Res Bull 79:376–387

    Article  PubMed  CAS  Google Scholar 

  20. Guillemin GJ, Brew BJ (2004) Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leuk Biol 75:388–397

    Article  CAS  Google Scholar 

  21. Hayes CE, Goldstein IJ (1974) An α-d-galactosyl-binding lectin from Bandeiraea simplicifolia seeds: isolation by affinity chromatography and characterization. J Biol Chem 249:1904–1914

    PubMed  CAS  Google Scholar 

  22. Huang WL, Harper CG, Evans SF, Newnham JP, Dunlop SA (2001) Repeated prenatal corticosteroid administration delays astrocyte and capillary tight junction maturation in fetal sheep. Int J Dev Neurosci 19:487–493

    Article  PubMed  CAS  Google Scholar 

  23. Huck SW (2000) Fully repeated measures analyses of variance. In: Huck SW (ed) Reading statistics and research. Longman, New York, pp 467–500

    Google Scholar 

  24. Imamoto K, Leblond CP (1978) Radioautographic investigation of gliogenesis in the corpus callosum of young rats. II. Origin of microglial cells. J Comp Neurol 180:139–163

    Article  PubMed  CAS  Google Scholar 

  25. Jacobson M (1991) Developmental neurobiology. Plenum Press, New York

    Google Scholar 

  26. Kaur C, Wu CH, Wen CY, Ling EA (1994) The effects of subcutaneous injections of glucocorticoids on amoeboid microglia in postnatal rats. Arch Histol Cytol 57:449–459

    Article  PubMed  CAS  Google Scholar 

  27. Kaur C, Too HF, Ling EA (2004) Phagocytosis of Escherichia coli by amoeboid microglial cells in the developing brain. Acta Neuropathol (Berlin) 107:204–208

    Article  CAS  Google Scholar 

  28. Kaur C, Dheen ST, Ling E-A (2007) From blood to brain: amoeboid microglial cell, a nascent macrophage and its functions in developing brain. Acta Pharmacol Sin 28:1087–1096

    Article  PubMed  CAS  Google Scholar 

  29. Kristensen M, Hansen T (2004) Statistical analyses of repeated measures in physiological research: a tutorial. Adv Phsyiol Educ 28:2–14

    Article  Google Scholar 

  30. Ling EA (1976) Some aspects of amoeboid microglia in the corpus callosum and neighboring regions of neonatal rats. J Anat 121:29–45

    PubMed  CAS  Google Scholar 

  31. Ling EA (1982) Influence of cortisone on amoeboid microglia and microglial cells in the corpus callosum in postnatal rats. J Anat 134:705–717

    PubMed  CAS  Google Scholar 

  32. Ling EA, Wong WC (1993) The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 7:9–18

    Article  PubMed  CAS  Google Scholar 

  33. Ludkiewicz B, Domaradzka-Pytel B, Morys J (2001) Microglial and astroglial cells in the rat paraclaustral reservoir during postnatal development: an immunohistochemical study. Acta Neurobiol Exp 61:35–43

    CAS  Google Scholar 

  34. Marcondes FK, Bianchi FJ, Tanno AP (2002) Determination of the estrous cycle phases of rats: some helpful considerations. Braz J Biol 62:609–614

    Article  PubMed  CAS  Google Scholar 

  35. Marín-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M (2004) Microglia promote the death of developing Purkinje cells. Neuron 41:535–547

    Article  PubMed  Google Scholar 

  36. Mirescu C, Peters JD, Gould E (2004) Early life experience alters response of adult neurogenesis to stress. Nat Neurosci 7:841–846

    Article  PubMed  CAS  Google Scholar 

  37. Nakajima K, Kohsaka S (1993) Functional roles of microglia in the brain. Neurosci Res 17:187–203

    Article  PubMed  CAS  Google Scholar 

  38. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  PubMed  CAS  Google Scholar 

  39. NRC (National Research Council) (2003) Guidelines for the care and use of mammals in neuroscience and behavioral research. National Academic Press, Washington DC

    Google Scholar 

  40. Ock J, Lee H, Kim S et al (2006) Induction of microglial apoptosis by corticotropin-releasing hormone. J Neurochem 98:962–972

    Article  PubMed  CAS  Google Scholar 

  41. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press–Elsevier, San Diego

    Google Scholar 

  42. Perry VH, Gordon S (1988) Macrophages and microglia in the nervous system. Trends Neurosci 11:273–277

    Article  PubMed  CAS  Google Scholar 

  43. Rasband WS (2004) Image J. National Institutes of Health, Bethesda, Maryland, USA. http://rsb.info.nih.gov/ij/1997–2005

  44. Sánchez-López AM, Cuadros MA, Calvente R, Tassi M, Marín-Teva JL, Navascués J (2005) Activation of immature microglia in response to stab wound in embryonic quail retina. J Comp Neurol 492:20–33

    Article  PubMed  Google Scholar 

  45. Sapolsky RM, Meaney MJ (1986) Maturation of the adrenal stress response: neuroendocrine control mechanisms and the stress hyporesponsive period. Brain Res Rev 11:65–76

    Article  CAS  Google Scholar 

  46. Streit WJ (1990) An improved staining method for rat microglial cells using the lectin from Griffonia simplicifolia (GSA I-B4). J Histochem Cytochem 38:1683–1686

    PubMed  CAS  Google Scholar 

  47. Streit WJ, Kreutzberg GW (1987) Lectin binding by resting and reactive microglia. J Neurocytol 16:249–260

    Article  PubMed  CAS  Google Scholar 

  48. Suckow MA, Weisbroth SH, Franklin CL (2006) The laboratory rat. American College of Laboratory Animal Medicine Series. Academic Press, New York

    Google Scholar 

  49. Szyndler J, Piechal A, Blecharz-Klin K, Skórzewska A, Maciejak P, Walkowiak J, Turzyńska D, Bidziński A, Plaźnik A, Widy-Tyszkiewics E (2006) Effect of kindled seizures on rat behavior in water Morris maze test and amino acid concentrations in brain structures. Phramacol Rep 58:75–82

    CAS  Google Scholar 

  50. Tanaka J, Fujita H, Matsuda S, Toku K, Sakanaka M, Maeda N (1997) Glucocorticoid- and mineralocorticoid receptors in microglial cells: the two receptors mediate differential effects of corticosteroids. Glia 20:23–37

    Article  PubMed  CAS  Google Scholar 

  51. Tseng CY, Ling EA, Wong WC (1983) Light and electron microscopic and cytochemical identification of amoeboid microglial cells in the brain of prenatal rats. J Anat 136:837–849

    PubMed  CAS  Google Scholar 

  52. Uno H, Lohmiller L, Thieme C et al (1990) Brain damage induced by prenatal exposure to dexamethasone in fetal rhesus macaques. I. Hippocampus. Dev Brain Res 53:157–167

    Article  CAS  Google Scholar 

  53. Wang W, Ji P, Riopelle RJ, Dow KE (2002) Functional expression of corticotropin-releasing hormone (CRH) receptor 1 in cultured rat microglia. J Neurochem 80:287–294

    Article  PubMed  CAS  Google Scholar 

  54. Wu CH, Wen CY, Shieh JY, Ling EA (1992) A quantitative and morphometric study of the transformation of amoeboid microglia into ramified microglia in the developing corpus callosum in rats. J Anat 181:423–430

    PubMed  Google Scholar 

  55. Wu CH, Wen CY, Shieh JY, Ling EA (1993) A quantitative study of the differentiation of microglial cells in the developing cerebral cortex in rats. J Anat 182:403–413

    PubMed  Google Scholar 

  56. Wu CH, Chien HF, Chang CY, Chen SH, Huang YS (2001) Response of amoeboid and differentiating ramified microglia to glucocorticoids in postnatal rats: a lectin histochemical and ultrastructural study. Neurosci Res 40:235–244

    Article  PubMed  CAS  Google Scholar 

  57. Zarrow MX, Phillpot JE, Denenberg VH (1970) Passage of 14C-4-corticosterone from the rat mother to the foetus and neonate. Nature 226:1058–1059

    Article  PubMed  CAS  Google Scholar 

  58. Zhou Y, Ling EA, Dheen ST (2007) Dexamethasone suppresses MCP-1 production via kinase phosphatase-1 dependent inhibition of JNK and p38 MAPK in activated microglia. J Neurochem 102:667–678

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by research grant PAPIIT IN219407 from DGAPA UNAM to A Escobar, and stipend 188838 from CONACyT to B Gómez-González. We thank Dr. Karen M. Weidenheim, M.D., Chief of the Division of Neuropathology, Montefiore Medical Center, for the correction of the English language and for her valuable comments on the final version of the manuscript. We thank Dr. Carolina Escobar for kindly providing the Coat-A-Count rat corticosterone kit, Dr. Carolina Escobar and Roberto Salgado for their valuable technical help and guidance with the radioimmunoassay technique, Jorge Ruiz for the guidance with the statistical tests, and Guadalupe Flores Cruz for the revision of an early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Gómez-González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-González, B., Escobar, A. Prenatal stress alters microglial development and distribution in postnatal rat brain. Acta Neuropathol 119, 303–315 (2010). https://doi.org/10.1007/s00401-009-0590-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-009-0590-4

Keywords

Navigation